論文の概要: Synthesizing 3D Abstractions by Inverting Procedural Buildings with Transformers
- arxiv url: http://arxiv.org/abs/2501.17044v2
- Date: Wed, 29 Jan 2025 11:06:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 12:31:36.447538
- Title: Synthesizing 3D Abstractions by Inverting Procedural Buildings with Transformers
- Title(参考訳): 変圧器を用いた手続き型建築物のインバージョンによる3次元抽象化の合成
- Authors: Maximilian Dax, Jordi Berbel, Jan Stria, Leonidas Guibas, Urs Bergmann,
- Abstract要約: 手続きモデルを逆転させることで,建物を抽象化する。
提案手法は, 形状, 構造, 構造的に一貫した塗装の精度を向上する。
- 参考スコア(独自算出の注目度): 2.199128905898291
- License:
- Abstract: We generate abstractions of buildings, reflecting the essential aspects of their geometry and structure, by learning to invert procedural models. We first build a dataset of abstract procedural building models paired with simulated point clouds and then learn the inverse mapping through a transformer. Given a point cloud, the trained transformer then infers the corresponding abstracted building in terms of a programmatic language description. This approach leverages expressive procedural models developed for gaming and animation, and thereby retains desirable properties such as efficient rendering of the inferred abstractions and strong priors for regularity and symmetry. Our approach achieves good reconstruction accuracy in terms of geometry and structure, as well as structurally consistent inpainting.
- Abstract(参考訳): 我々は、手続きモデルを逆転させることで、その幾何学と構造の本質的な側面を反映して、建物の抽象化を生成する。
まず、シミュレーションされた点雲と組み合わせた抽象手続き型建築モデルのデータセットを構築し、変換器を通して逆写像を学習する。
ポイントクラウドが与えられた後、トレーニングされたトランスフォーマーは、プログラム言語の記述の観点から、対応する抽象的なビルディングを推論する。
このアプローチはゲームやアニメーションのために開発された表現的手続きモデルを活用し、推論された抽象の効率的なレンダリングや規則性と対称性の強い先行といった望ましい特性を保持する。
提案手法は, 形状, 構造, 構造的に一貫した塗装の精度を向上する。
関連論文リスト
- Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
大空間モデル(LSM)は、RGB画像を直接意味的放射場に処理する。
LSMは、単一のフィードフォワード操作における幾何学、外観、意味を同時に推定する。
新しい視点で言語と対話することで、多目的ラベルマップを生成することができる。
論文 参考訳(メタデータ) (2024-10-24T17:54:42Z) - DeFormer: Integrating Transformers with Deformable Models for 3D Shape
Abstraction from a Single Image [31.154786931081087]
本稿では,パラメータ化デフォルマブルモデルと統合された新しいバイチャネルトランスフォーマアーキテクチャを提案し,プリミティブのグローバルおよび局所的な変形を同時に推定する。
DeFormerは、最先端技術よりもより良い再構築精度を実現し、一貫したセマンティック対応で可視化し、解釈性を向上させる。
論文 参考訳(メタデータ) (2023-09-22T02:46:43Z) - ANISE: Assembly-based Neural Implicit Surface rEconstruction [12.745433575962842]
本稿では,部分的な観測から3次元形状を再構成するANISEについて述べる。
形状は神経暗黙の関数の集合として定式化され、それぞれが異なる部分のインスタンスを表す。
本研究では,部品表現を暗黙の関数に復号化して再構成を行う場合,画像とスパース点の雲から最先端の部品認識再構成結果が得られることを示す。
論文 参考訳(メタデータ) (2022-05-27T00:01:40Z) - Autoregressive 3D Shape Generation via Canonical Mapping [92.91282602339398]
トランスフォーマーは、画像、音声、テキスト生成など、様々な生成タスクで顕著なパフォーマンスを示している。
本稿では,変圧器のパワーをさらに活用し,それを3Dポイントクラウド生成のタスクに活用することを目的とする。
条件付き形状生成への応用として,本モデルを簡単にマルチモーダル形状完成に拡張することができる。
論文 参考訳(メタデータ) (2022-04-05T03:12:29Z) - SPAMs: Structured Implicit Parametric Models [30.19414242608965]
本研究では,非剛体物体の動きを形状とポーズの部分的不整合表現に構造的に分解する変形可能なオブジェクト表現として,構造化単純パラメトリックモデル(SPAM)を学習する。
複雑な変形物体の動きの深度配列の復元と追跡において、我々の部分認識形状とポーズ理解が最先端のパフォーマンスに繋がることを示す実験を行った。
論文 参考訳(メタデータ) (2022-01-20T12:33:46Z) - Automated LoD-2 Model Reconstruction from Very-HighResolution
Satellite-derived Digital Surface Model and Orthophoto [1.2691047660244335]
本稿では,LoD-2ビルディングモデルを「分解最適化最適化」パラダイムに従って再構成するモデル駆動手法を提案する。
提案手法は,既存の手法に対するいくつかの技術的問題点に対処し,その有効性を実証した。
論文 参考訳(メタデータ) (2021-09-08T19:03:09Z) - Translational Symmetry-Aware Facade Parsing for 3D Building
Reconstruction [11.263458202880038]
本稿では,深部ニューラルネットワーク改善のための新しい翻訳対称性に基づくアプローチを提案する。
本研究では,単一段ネットワークにおけるアンカーフリー検出を融合させる新しい手法を提案する。
我々はBlenderのような市販のレンダリングエンジンを使用して、手続きモデルを用いて現実的な高品質な3Dモデルを再構築する。
論文 参考訳(メタデータ) (2021-06-02T03:10:51Z) - Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible
Neural Networks [118.20778308823779]
Invertible Neural Network (INN) を用いてプリミティブを定義する新しい3次元プリミティブ表現を提案する。
私たちのモデルは、部品レベルの監督なしに3Dオブジェクトを意味的に一貫した部品配置に解析することを学びます。
論文 参考訳(メタデータ) (2021-03-18T17:59:31Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z) - Convolutional Occupancy Networks [88.48287716452002]
本稿では,オブジェクトと3Dシーンの詳細な再構築のための,より柔軟な暗黙的表現である畳み込み機能ネットワークを提案する。
畳み込みエンコーダと暗黙の占有デコーダを組み合わせることで、帰納的バイアスが組み込まれ、3次元空間における構造的推論が可能となる。
実験により,本手法は単一物体の微細な3次元再構成,大規模屋内シーンへのスケール,合成データから実データへの一般化を可能にした。
論文 参考訳(メタデータ) (2020-03-10T10:17:07Z) - Unsupervised Learning of Intrinsic Structural Representation Points [50.92621061405056]
3次元形状の学習構造は、コンピュータグラフィックスと幾何学処理の分野における根本的な問題である。
本稿では,3次元構造点の形で新しい構造表現を学習するための簡易かつ解釈不能な手法を提案する。
論文 参考訳(メタデータ) (2020-03-03T17:40:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。