Contextual Self-paced Learning for Weakly Supervised Spatio-Temporal Video Grounding
- URL: http://arxiv.org/abs/2501.17053v2
- Date: Tue, 04 Feb 2025 17:30:08 GMT
- Title: Contextual Self-paced Learning for Weakly Supervised Spatio-Temporal Video Grounding
- Authors: Akash Kumar, Zsolt Kira, Yogesh Singh Rawat,
- Abstract summary: We focus on Weakly Supervised S-Temporal Video Grounding (WSTVG)
We first explore the potential of state-of-the-art object detection models for WSTVG.
Despite their robust zero-shot capabilities, our adaptation reveals significant limitations.
We propose CoSPaL, a novel approach which is designed to overcome these limitations.
- Score: 24.650102499933514
- License:
- Abstract: In this work, we focus on Weakly Supervised Spatio-Temporal Video Grounding (WSTVG). It is a multimodal task aimed at localizing specific subjects spatio-temporally based on textual queries without bounding box supervision. Motivated by recent advancements in multi-modal foundation models for grounding tasks, we first explore the potential of state-of-the-art object detection models for WSTVG. Despite their robust zero-shot capabilities, our adaptation reveals significant limitations, including inconsistent temporal predictions, inadequate understanding of complex queries, and challenges in adapting to difficult scenarios. We propose CoSPaL (Contextual Self-Paced Learning), a novel approach which is designed to overcome these limitations. CoSPaL integrates three core components: (1) Tubelet Phrase Grounding (TPG), which introduces spatio-temporal prediction by linking textual queries to tubelets; (2) Contextual Referral Grounding (CRG), which improves comprehension of complex queries by extracting contextual information to refine object identification over time; and (3) Self-Paced Scene Understanding (SPS), a training paradigm that progressively increases task difficulty, enabling the model to adapt to complex scenarios by transitioning from coarse to fine-grained understanding.
Related papers
- STEP: Enhancing Video-LLMs' Compositional Reasoning by Spatio-Temporal Graph-guided Self-Training [87.58996020705258]
Video Large Language Models (Video-LLMs) have recently shown strong derivation in basic video understanding tasks.
Video-LLMs struggle with compositional reasoning that requires multi-step explicit-temporal inference across object relations, interactions and events.
We propose STEP, a novel graph-guided self-training method that enables VideoLLMs to generate reasoning-rich finetuning data from any raw videos to improve itself.
arXiv Detail & Related papers (2024-11-29T11:54:55Z) - EasyST: A Simple Framework for Spatio-Temporal Prediction [18.291117879544945]
We propose a simple framework for spatial-temporal prediction - EasyST paradigm.
It learns lightweight and robust Multi-Layer Perceptrons (MLPs) generalization by distilling knowledge from complex-temporal GNNs.
EasyST surpasses state-of-the-art approaches in terms of efficiency and accuracy.
arXiv Detail & Related papers (2024-09-10T11:40:01Z) - Hierarchical Temporal Context Learning for Camera-based Semantic Scene Completion [57.232688209606515]
We present HTCL, a novel Temporal Temporal Context Learning paradigm for improving camera-based semantic scene completion.
Our method ranks $1st$ on the Semantic KITTI benchmark and even surpasses LiDAR-based methods in terms of mIoU.
arXiv Detail & Related papers (2024-07-02T09:11:17Z) - RAG-based Crowdsourcing Task Decomposition via Masked Contrastive Learning with Prompts [21.69333828191263]
We propose a retrieval-augmented generation-based crowdsourcing framework that reimagines task decomposition (TD) as event detection from the perspective of natural language understanding.
We present a Prompt-Based Contrastive learning framework for TD (PBCT), which incorporates a prompt-based trigger detector to overcome dependence.
Experiment results demonstrate the competitiveness of our method in both supervised and zero-shot detection.
arXiv Detail & Related papers (2024-06-04T08:34:19Z) - Thread of Thought Unraveling Chaotic Contexts [133.24935874034782]
"Thread of Thought" (ThoT) strategy draws inspiration from human cognitive processes.
In experiments, ThoT significantly improves reasoning performance compared to other prompting techniques.
arXiv Detail & Related papers (2023-11-15T06:54:44Z) - A Threefold Review on Deep Semantic Segmentation: Efficiency-oriented,
Temporal and Depth-aware design [77.34726150561087]
We conduct a survey on the most relevant and recent advances in Deep Semantic in the context of vision for autonomous vehicles.
Our main objective is to provide a comprehensive discussion on the main methods, advantages, limitations, results and challenges faced from each perspective.
arXiv Detail & Related papers (2023-03-08T01:29:55Z) - Embracing Consistency: A One-Stage Approach for Spatio-Temporal Video
Grounding [35.73830796500975]
We present an end-to-end one-stage framework, termed Spatio-Temporal Consistency-Aware Transformer (STCAT)
To generate the above template under sufficient video- perception, an encoder-decoder architecture is proposed for effective global context modeling.
Our method outperforms previous state-of-the-arts with clear margins on two challenging video benchmarks.
arXiv Detail & Related papers (2022-09-27T11:13:04Z) - Self-supervised Learning for Semi-supervised Temporal Language Grounding [84.11582376377471]
Temporal Language Grounding (TLG) aims to localize temporal boundaries of the segments that contain the specified semantics in an untrimmed video.
Previous works either tackle this task in a fully-supervised setting that requires a large amount of manual annotations or in a weakly supervised setting that cannot achieve satisfactory performance.
To achieve good performance with limited annotations, we tackle this task in a semi-supervised way and propose a unified Semi-supervised Temporal Language Grounding (STLG) framework.
arXiv Detail & Related papers (2021-09-23T16:29:16Z) - Weakly Supervised Temporal Adjacent Network for Language Grounding [96.09453060585497]
We introduce a novel weakly supervised temporal adjacent network (WSTAN) for temporal language grounding.
WSTAN learns cross-modal semantic alignment by exploiting temporal adjacent network in a multiple instance learning (MIL) paradigm.
An additional self-discriminating loss is devised on both the MIL branch and the complementary branch, aiming to enhance semantic discrimination by self-supervising.
arXiv Detail & Related papers (2021-06-30T15:42:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.