Thread of Thought Unraveling Chaotic Contexts
- URL: http://arxiv.org/abs/2311.08734v1
- Date: Wed, 15 Nov 2023 06:54:44 GMT
- Title: Thread of Thought Unraveling Chaotic Contexts
- Authors: Yucheng Zhou, Xiubo Geng, Tao Shen, Chongyang Tao, Guodong Long,
Jian-Guang Lou, Jianbing Shen
- Abstract summary: "Thread of Thought" (ThoT) strategy draws inspiration from human cognitive processes.
In experiments, ThoT significantly improves reasoning performance compared to other prompting techniques.
- Score: 133.24935874034782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have ushered in a transformative era in the
field of natural language processing, excelling in tasks related to text
comprehension and generation. Nevertheless, they encounter difficulties when
confronted with chaotic contexts (e.g., distractors rather than long irrelevant
context), leading to the inadvertent omission of certain details within the
chaotic context. In response to these challenges, we introduce the "Thread of
Thought" (ThoT) strategy, which draws inspiration from human cognitive
processes. ThoT systematically segments and analyzes extended contexts while
adeptly selecting pertinent information. This strategy serves as a versatile
"plug-and-play" module, seamlessly integrating with various LLMs and prompting
techniques. In the experiments, we utilize the PopQA and EntityQ datasets, as
well as a Multi-Turn Conversation Response dataset (MTCR) we collected, to
illustrate that ThoT significantly improves reasoning performance compared to
other prompting techniques.
Related papers
- FltLM: An Intergrated Long-Context Large Language Model for Effective Context Filtering and Understanding [32.197113821638936]
We propose a novel integrated Long-Context Large Language Model (FltLM)
FltLM incorporates a context filter with a soft mask mechanism, identifying and dynamically excluding irrelevant content to concentrate on pertinent information.
Experimental results demonstrate that FltLM significantly outperforms supervised fine-tuning and retrieval-based methods in complex QA scenarios.
arXiv Detail & Related papers (2024-10-09T13:47:50Z) - QRMeM: Unleash the Length Limitation through Question then Reflection Memory Mechanism [46.441032033076034]
Memory mechanism offers a flexible solution for managing long contexts.
We introduce a novel strategy, Question then Reflection Memory Mechanism (QRMeM), incorporating a dual-structured memory pool.
Our evaluation across multiple-choice questions (MCQ) and multi-document question answering (Multi-doc QA) benchmarks showcases QRMeM enhanced performance compared to existing approaches.
arXiv Detail & Related papers (2024-06-19T02:46:18Z) - Retrieval Meets Reasoning: Dynamic In-Context Editing for Long-Text Understanding [11.5386284281652]
We introduce a novel approach that re-imagines information retrieval through dynamic in-context editing.
By treating lengthy contexts as malleable external knowledge, our method interactively gathers and integrates relevant information.
Experimental results demonstrate that our method effectively empowers context-limited LLMs to engage in multi-hop reasoning with improved performance.
arXiv Detail & Related papers (2024-06-18T06:54:28Z) - VLLMs Provide Better Context for Emotion Understanding Through Common Sense Reasoning [66.23296689828152]
We leverage the capabilities of Vision-and-Large-Language Models to enhance in-context emotion classification.
In the first stage, we propose prompting VLLMs to generate descriptions in natural language of the subject's apparent emotion.
In the second stage, the descriptions are used as contextual information and, along with the image input, are used to train a transformer-based architecture.
arXiv Detail & Related papers (2024-04-10T15:09:15Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
Large language models (LLMs) have dramatically enhanced the field of language intelligence.
LLMs leverage the intriguing chain-of-thought (CoT) reasoning techniques, obliging them to formulate intermediate steps en route to deriving an answer.
Recent research endeavors have extended CoT reasoning methodologies to nurture the development of autonomous language agents.
arXiv Detail & Related papers (2023-11-20T14:30:55Z) - Recursion of Thought: A Divide-and-Conquer Approach to Multi-Context
Reasoning with Language Models [58.41943058963672]
We propose a new inference framework called Recursion of Thought (RoT)
RoT introduces several special tokens that the models can output to trigger context-related operations.
Experiments with multiple architectures including GPT-3 show that RoT dramatically improves LMs' inference capability to solve problems.
arXiv Detail & Related papers (2023-06-12T06:34:16Z) - Can Unsupervised Knowledge Transfer from Social Discussions Help
Argument Mining? [25.43442712037725]
We propose a novel transfer learning strategy to overcome the challenges of unsupervised, argumentative discourse-aware knowledge.
We utilize argumentation-rich social discussions from the ChangeMyView subreddit as a source of unsupervised, argumentative discourse-aware knowledge.
We introduce a novel prompt-based strategy for inter-component relation prediction that compliments our proposed finetuning method.
arXiv Detail & Related papers (2022-03-24T06:48:56Z) - Response Selection for Multi-Party Conversations with Dynamic Topic
Tracking [63.15158355071206]
We frame response selection as a dynamic topic tracking task to match the topic between the response and relevant conversation context.
We propose a novel multi-task learning framework that supports efficient encoding through large pretrained models.
Experimental results on the DSTC-8 Ubuntu IRC dataset show state-of-the-art results in response selection and topic disentanglement tasks.
arXiv Detail & Related papers (2020-10-15T14:21:38Z) - Topic-Aware Multi-turn Dialogue Modeling [91.52820664879432]
This paper presents a novel solution for multi-turn dialogue modeling, which segments and extracts topic-aware utterances in an unsupervised way.
Our topic-aware modeling is implemented by a newly proposed unsupervised topic-aware segmentation algorithm and Topic-Aware Dual-attention Matching (TADAM) Network.
arXiv Detail & Related papers (2020-09-26T08:43:06Z) - Topic Propagation in Conversational Search [0.0]
In a conversational context, a user expresses her multi-faceted information need as a sequence of natural-language questions.
We adopt the 2019 TREC Conversational Assistant Track (CAsT) framework to experiment with a modular architecture performing: (i) topic-aware utterance rewriting, (ii) retrieval of candidate passages for the rewritten utterances, and (iii) neural-based re-ranking of candidate passages.
arXiv Detail & Related papers (2020-04-29T10:06:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.