Amplifying microwave pulses with a single qubit engine fueled by quantum measurements
- URL: http://arxiv.org/abs/2501.17069v2
- Date: Thu, 26 Jun 2025 15:04:03 GMT
- Title: Amplifying microwave pulses with a single qubit engine fueled by quantum measurements
- Authors: Rémy Dassonneville, Cyril Elouard, Romain Cazali, Réouven Assouly, Audrey Bienfait, Alexia Auffèves, Benjamin Huard,
- Abstract summary: We demonstrate the amplification of microwave signals by an engine fueled by repeated quantum measurements of a superconducting transmon qubit.<n>Using feedback, the engine acts as a quantum Maxwell demon operating without a hot thermal source.<n>We characterize the long-term stability of the engine as well as its robustness to transmon decoherence, loss and drifts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in manipulating individual quantum systems enables the exploration of engines exploiting non-classical resources. One of the most appealing is the energy provided by the inherent backaction of quantum measurements. While a handful of experiments have investigated the inner dynamics of engines fueled by measurement backaction, powering a useful task by such an engine is missing. Here we demonstrate the amplification of microwave signals by an engine fueled by repeated quantum measurements of a superconducting transmon qubit. Using feedback, the engine acts as a quantum Maxwell demon operating without a hot thermal source. Measuring the gain of this amplification constitutes a direct probing of the work output of the engine, in contrast with inferring the work by measuring the qubit state along its evolution. Observing a good agreement between both work estimation methods, our experiment validates the accuracy of the indirect method. We characterize the long-term stability of the engine as well as its robustness to transmon decoherence, loss and drifts. Our experiment exemplifies a practical usage of the energy brought by quantum measurement backaction.
Related papers
- Experimental realization of a quantum heat engine based on dissipation-engineered superconducting circuits [0.0]
We experimentally demonstrate a quantum heat engine based on superconducting circuits.<n>We implement a quantum Otto cycle by a tailored drive on the QCR to sequentially induce cooling and heating.<n>We measure positive output powers and efficiencies that agree with our simulations of the quantum evolution.
arXiv Detail & Related papers (2025-02-27T14:34:29Z) - Detection of entanglement by harnessing extracted work in an opto-magno-mechanics [0.0]
We address a bipartite entanglement via extracted work in a cavity magnomechanical system inside an yttrium iron garnet sphere.
The extracted work was obtained through a device similar to the Szil'ard engine.
We employ logarithmic negativity to measure the amount of entanglement between photon and magnon modes in steady and dynamical states.
arXiv Detail & Related papers (2024-05-29T15:46:51Z) - Quantum unital Otto heat engines: using Kirkwood-Dirac quasi-probability for the engine's coherence to stay alive [0.0]
We show how to compute the cumulants of either the dephased or undephased heat engine.
For a qubit, we give the analytical expressions of the averages and variances for arbitrary unitaries and unital channels.
We show that non-adiabatic transitions are not always detrimental to thermodynamic quantities.
arXiv Detail & Related papers (2024-05-07T12:00:02Z) - Limits on quantum measurement engines [0.0]
We propose a quantum engine based on a spin 1/2 particle in a magnetic field.
We fully study its dynamics, work, power and efficiency.
arXiv Detail & Related papers (2023-12-13T13:58:42Z) - Plasmonic skyrmion quantum thermodynamics [0.0]
We propose a quantum heat engine that capitalizes on the plasmonic skyrmion lattice.
Through rigorous analysis, we demonstrate that the quantum skyrmion substance exhibits zero irreversible work.
Our engine operates without the need for adiabatic shortcuts.
arXiv Detail & Related papers (2023-12-09T19:44:24Z) - Advantages of non-Hookean coupling in a measurement-fueled
two-oscillator engine [65.268245109828]
A quantum engine composed of two oscillators with a non-Hookean coupling is proposed.
Unlike the more common quantum heat engines, the setup introduced here does not require heat baths as the energy for the operation originates from measurements.
Numerical simulations are used to demonstrate the measurement-driven fueling, as well as the reduced decoupling energy.
arXiv Detail & Related papers (2023-11-08T04:09:26Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Maxwell's two-demon engine under pure dephasing noise [0.41562334038629595]
A quantum Szil'ard engine has been proposed, showing that the quantum steerability between a Maxwell's demon and a work medium can be beneficial to a work extraction task.
We provide an example of the pure dephasing process, showing that the engine's quantumness can be degraded.
In this work, we tackle this question by introducing a second demon who can access a control system and make the work medium pass through two dephasing channels in a manner of quantum superposition.
arXiv Detail & Related papers (2022-06-13T06:27:00Z) - Experimental limit on non-linear state-dependent terms in quantum theory [110.83289076967895]
We implement blinded measurement and data analysis with three control bit strings.
Control of systematic effects is realized by producing one of the control bit strings with a classical random-bit generator.
Our measurements find no evidence for electromagnetic quantum state-dependent non-linearity.
arXiv Detail & Related papers (2022-04-25T18:00:03Z) - Experimental investigation of a quantum heat engine powered by
generalized measurements [0.0]
Generalized measurements may allow the control of its back-action on the quantum system by interpolating from a very weak to strong projective action.
Such a measurement can fuel a quantum heat engine or extract work depending on the system-meter interaction.
arXiv Detail & Related papers (2022-04-03T10:30:01Z) - Probing quantum devices with radio-frequency reflectometry [68.48453061559003]
Radio-frequency reflectometry can measure changes in impedance even when their duration is extremely short, down to a microsecond or less.
Examples of reflectometry experiments include projective measurements of qubits and Majorana devices for quantum computing.
This book aims to introduce the readers to the technique, to review the advances to date and to motivate new experiments in fast quantum device dynamics.
arXiv Detail & Related papers (2022-02-21T20:14:21Z) - Spin Quantum Heat Engine Quantified by Quantum Steering [11.372394890620187]
We experimentally demonstrate that the quantum correlation between the working medium and the thermal bath is critical for the quantum advantage of a quantum Szilard engine.
By quantifying the non-classical correlation through quantum steering, we reveal that the heat engine is quantum when the demon can truly steer the working medium.
arXiv Detail & Related papers (2022-02-04T08:04:25Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Efficiently Fuelling a Quantum Engine with Incompatible Measurements [0.0]
We present two protocols for work extraction, respectively based on single-shot and time-continuous quantum measurements.
We relate the extractable work to the noise added by quadrature measurements, and present exact results for the work distribution at arbitrary finite time.
arXiv Detail & Related papers (2021-07-28T09:32:35Z) - Collective effects on the performance and stability of quantum heat
engines [62.997667081978825]
Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest.
One essential question is whether collective effects may help to carry enhancements over larger scales.
We study how power, efficiency and constancy scale with the number of spins composing the engine.
arXiv Detail & Related papers (2021-06-25T18:00:07Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Quantum jump approach to microscopic heat engines [0.0]
Modern technologies could soon make it possible to investigate the operation cycles of quantum heat engines by counting the photons that are emitted and absorbed by their working systems.
We show that such experiments would give access to a set of observables that determine the trade-off between power and efficiency in finite-time engine cycles.
arXiv Detail & Related papers (2020-05-25T17:00:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.