Unlocking Transparent Alignment Through Enhanced Inverse Constitutional AI for Principle Extraction
- URL: http://arxiv.org/abs/2501.17112v1
- Date: Tue, 28 Jan 2025 17:59:56 GMT
- Title: Unlocking Transparent Alignment Through Enhanced Inverse Constitutional AI for Principle Extraction
- Authors: Carl-Leander Henneking, Claas Beger,
- Abstract summary: Constitutional AI (CAI) offers an explicit, rule-based framework for guiding model outputs.
We refine the Inverse Constitutional AI (ICAI) algorithm, which extracts constitutions from preference datasets.
Our results highlight the potential of these principles to foster more transparent and adaptable alignment methods.
- Score: 0.0
- License:
- Abstract: Traditional methods for aligning Large Language Models (LLMs), such as Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO), rely on implicit principles, limiting interpretability. Constitutional AI (CAI) offers an explicit, rule-based framework for guiding model outputs. Building on this, we refine the Inverse Constitutional AI (ICAI) algorithm, which extracts constitutions from preference datasets. By improving principle generation, clustering, and embedding processes, our approach enhances the accuracy and generalizability of extracted principles across synthetic and real-world datasets. While in-context alignment yields modest improvements, our results highlight the potential of these principles to foster more transparent and adaptable alignment methods, offering a promising direction for future advancements beyond traditional fine-tuning.
Related papers
- On-the-fly Preference Alignment via Principle-Guided Decoding [27.50204023448716]
We introduce On-the-fly Preference Alignment via Principle-Guided Decoding (OPAD) to align model outputs with human preferences during inference.
OPAD achieves competitive or superior performance in both general and personalized alignment tasks.
arXiv Detail & Related papers (2025-02-20T02:23:09Z) - Deliberative Alignment: Reasoning Enables Safer Language Models [64.60765108418062]
We introduce Deliberative Alignment, a new paradigm that teaches the model safety specifications and trains it to explicitly recall and accurately reason over the specifications before answering.
We used this approach to align OpenAI's o-series models, and achieved highly precise adherence to OpenAI's safety policies, without requiring human-written chain-of-thoughts or answers.
arXiv Detail & Related papers (2024-12-20T21:00:11Z) - Novel Saliency Analysis for the Forward Forward Algorithm [0.0]
We introduce the Forward Forward algorithm into neural network training.
This method involves executing two forward passes the first with actual data to promote positive reinforcement, and the second with synthetically generated negative data to enable discriminative learning.
To overcome the limitations inherent in traditional saliency techniques, we developed a bespoke saliency algorithm specifically tailored for the Forward Forward framework.
arXiv Detail & Related papers (2024-09-18T17:21:59Z) - A Parametric Class of Approximate Gradient Updates for Policy
Optimization [47.69337420768319]
We develop a unified perspective that re-expresses the underlying updates in terms of a limited choice of gradient form and scaling function.
We obtain novel yet well motivated updates that generalize existing algorithms in a way that can deliver benefits both in terms of convergence speed and final result quality.
arXiv Detail & Related papers (2022-06-17T01:28:38Z) - Higher-Order Generalization Bounds: Learning Deep Probabilistic Programs
via PAC-Bayes Objectives [0.0]
We offer a framework for representing PAC-Bayes generalization bounds as programs using DPP-based methods.
In particular, we show that DPP techniques may be leveraged to derive generalization bounds that draw on the compositionality of DPP representations.
In turn, the bounds we introduce offer principled training objectives for higher-order probabilistic programs.
arXiv Detail & Related papers (2022-03-30T01:14:56Z) - A Regularized Implicit Policy for Offline Reinforcement Learning [54.7427227775581]
offline reinforcement learning enables learning from a fixed dataset, without further interactions with the environment.
We propose a framework that supports learning a flexible yet well-regularized fully-implicit policy.
Experiments and ablation study on the D4RL dataset validate our framework and the effectiveness of our algorithmic designs.
arXiv Detail & Related papers (2022-02-19T20:22:04Z) - Towards Principled Disentanglement for Domain Generalization [90.9891372499545]
A fundamental challenge for machine learning models is generalizing to out-of-distribution (OOD) data.
We first formalize the OOD generalization problem as constrained optimization, called Disentanglement-constrained Domain Generalization (DDG)
Based on the transformation, we propose a primal-dual algorithm for joint representation disentanglement and domain generalization.
arXiv Detail & Related papers (2021-11-27T07:36:32Z) - InteL-VAEs: Adding Inductive Biases to Variational Auto-Encoders via
Intermediary Latents [60.785317191131284]
We introduce a simple and effective method for learning VAEs with controllable biases by using an intermediary set of latent variables.
In particular, it allows us to impose desired properties like sparsity or clustering on learned representations.
We show that this, in turn, allows InteL-VAEs to learn both better generative models and representations.
arXiv Detail & Related papers (2021-06-25T16:34:05Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
This paper analyzes a framework for improving generalization in a purely supervised setting, where the target space is high-dimensional.
We motivate and formalize the general framework of target-embedding autoencoders (TEA) for supervised prediction, learning intermediate latent representations jointly optimized to be both predictable from features as well as predictive of targets.
arXiv Detail & Related papers (2020-01-23T02:37:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.