Unlocking Transparent Alignment Through Enhanced Inverse Constitutional AI for Principle Extraction
- URL: http://arxiv.org/abs/2501.17112v1
- Date: Tue, 28 Jan 2025 17:59:56 GMT
- Title: Unlocking Transparent Alignment Through Enhanced Inverse Constitutional AI for Principle Extraction
- Authors: Carl-Leander Henneking, Claas Beger,
- Abstract summary: Constitutional AI (CAI) offers an explicit, rule-based framework for guiding model outputs.<n>We refine the Inverse Constitutional AI (ICAI) algorithm, which extracts constitutions from preference datasets.<n>Our results highlight the potential of these principles to foster more transparent and adaptable alignment methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional methods for aligning Large Language Models (LLMs), such as Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO), rely on implicit principles, limiting interpretability. Constitutional AI (CAI) offers an explicit, rule-based framework for guiding model outputs. Building on this, we refine the Inverse Constitutional AI (ICAI) algorithm, which extracts constitutions from preference datasets. By improving principle generation, clustering, and embedding processes, our approach enhances the accuracy and generalizability of extracted principles across synthetic and real-world datasets. While in-context alignment yields modest improvements, our results highlight the potential of these principles to foster more transparent and adaptable alignment methods, offering a promising direction for future advancements beyond traditional fine-tuning.
Related papers
- RACE-Align: Retrieval-Augmented and Chain-of-Thought Enhanced Preference Alignment for Large Language Models [11.107932406541865]
This paper introduces RACE-Align, a novel framework designed to address the limitations of traditional preference alignment methods.<n> RACE-Align systematically constructs a binary preference dataset incorporating external knowledge support and explicit Chain-of-Thought (CoT) reasoning.<n> Experimental validation in Traditional Chinese Medicine (TCM) using Qwen3-1.7B as the base model demonstrates that RACE-Align significantly outperforms the original base model.
arXiv Detail & Related papers (2025-06-03T10:36:38Z) - RL-finetuning LLMs from on- and off-policy data with a single algorithm [53.70731390624718]
We introduce a novel reinforcement learning algorithm (AGRO) for fine-tuning large-language models.
AGRO leverages the concept of generation consistency, which states that the optimal policy satisfies the notion of consistency across any possible generation of the model.
We derive algorithms that find optimal solutions via the sample-based policy gradient and provide theoretical guarantees on their convergence.
arXiv Detail & Related papers (2025-03-25T12:52:38Z) - A Survey of Direct Preference Optimization [103.59317151002693]
Large Language Models (LLMs) have demonstrated unprecedented generative capabilities.
Their alignment with human values remains critical for ensuring helpful and harmless deployments.
Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative.
arXiv Detail & Related papers (2025-03-12T08:45:15Z) - On-the-fly Preference Alignment via Principle-Guided Decoding [27.50204023448716]
We introduce On-the-fly Preference Alignment via Principle-Guided Decoding (OPAD) to align model outputs with human preferences during inference.
OPAD achieves competitive or superior performance in both general and personalized alignment tasks.
arXiv Detail & Related papers (2025-02-20T02:23:09Z) - Large Language Model-Enhanced Symbolic Reasoning for Knowledge Base Completion [28.724919973497943]
Large language models (LLMs) and rule-based reasoning offer a powerful solution for improving the flexibility and reliability of Knowledge Base Completion.<n>We propose a novel framework consisting of a Subgraph Extractor, an LLM Proposer, and a Rule Reasoner.<n>Our approach offers several key benefits: the utilization of LLMs to enhance the richness and diversity of the proposed rules, and the integration with rule-based reasoning to improve reliability.
arXiv Detail & Related papers (2025-01-02T13:14:28Z) - Deliberative Alignment: Reasoning Enables Safer Language Models [64.60765108418062]
We introduce Deliberative Alignment, a new paradigm that teaches the model safety specifications and trains it to explicitly recall and accurately reason over the specifications before answering.<n>We used this approach to align OpenAI's o-series models, and achieved highly precise adherence to OpenAI's safety policies, without requiring human-written chain-of-thoughts or answers.
arXiv Detail & Related papers (2024-12-20T21:00:11Z) - Novel Saliency Analysis for the Forward Forward Algorithm [0.0]
We introduce the Forward Forward algorithm into neural network training.
This method involves executing two forward passes the first with actual data to promote positive reinforcement, and the second with synthetically generated negative data to enable discriminative learning.
To overcome the limitations inherent in traditional saliency techniques, we developed a bespoke saliency algorithm specifically tailored for the Forward Forward framework.
arXiv Detail & Related papers (2024-09-18T17:21:59Z) - Forward KL Regularized Preference Optimization for Aligning Diffusion Policies [8.958830452149789]
A central problem for learning diffusion policies is to align the policy output with human intents in various tasks.
We propose a novel framework, Forward KL regularized Preference optimization, to align the diffusion policy with preferences directly.
The results show our method exhibits superior alignment with preferences and outperforms previous state-of-the-art algorithms.
arXiv Detail & Related papers (2024-09-09T13:56:03Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z) - Linear Alignment: A Closed-form Solution for Aligning Human Preferences without Tuning and Feedback [70.32795295142648]
Linear alignment is a novel algorithm that aligns language models with human preferences in one single inference step.
Experiments on both general and personalized preference datasets demonstrate that linear alignment significantly enhances the performance and efficiency of LLM alignment.
arXiv Detail & Related papers (2024-01-21T10:46:23Z) - Nash Learning from Human Feedback [86.09617990412941]
We introduce an alternative pipeline for the fine-tuning of large language models using pairwise human feedback.
We term this approach Nash learning from human feedback (NLHF)
We present a novel algorithmic solution, Nash-MD, founded on the principles of mirror descent.
arXiv Detail & Related papers (2023-12-01T19:26:23Z) - Accelerated Federated Learning with Decoupled Adaptive Optimization [53.230515878096426]
federated learning (FL) framework enables clients to collaboratively learn a shared model while keeping privacy of training data on clients.
Recently, many iterations efforts have been made to generalize centralized adaptive optimization methods, such as SGDM, Adam, AdaGrad, etc., to federated settings.
This work aims to develop novel adaptive optimization methods for FL from the perspective of dynamics of ordinary differential equations (ODEs)
arXiv Detail & Related papers (2022-07-14T22:46:43Z) - A Parametric Class of Approximate Gradient Updates for Policy
Optimization [47.69337420768319]
We develop a unified perspective that re-expresses the underlying updates in terms of a limited choice of gradient form and scaling function.
We obtain novel yet well motivated updates that generalize existing algorithms in a way that can deliver benefits both in terms of convergence speed and final result quality.
arXiv Detail & Related papers (2022-06-17T01:28:38Z) - Higher-Order Generalization Bounds: Learning Deep Probabilistic Programs
via PAC-Bayes Objectives [0.0]
We offer a framework for representing PAC-Bayes generalization bounds as programs using DPP-based methods.
In particular, we show that DPP techniques may be leveraged to derive generalization bounds that draw on the compositionality of DPP representations.
In turn, the bounds we introduce offer principled training objectives for higher-order probabilistic programs.
arXiv Detail & Related papers (2022-03-30T01:14:56Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
This paper analyzes a framework for improving generalization in a purely supervised setting, where the target space is high-dimensional.
We motivate and formalize the general framework of target-embedding autoencoders (TEA) for supervised prediction, learning intermediate latent representations jointly optimized to be both predictable from features as well as predictive of targets.
arXiv Detail & Related papers (2020-01-23T02:37:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.