A Parametric Class of Approximate Gradient Updates for Policy
Optimization
- URL: http://arxiv.org/abs/2206.08499v1
- Date: Fri, 17 Jun 2022 01:28:38 GMT
- Title: A Parametric Class of Approximate Gradient Updates for Policy
Optimization
- Authors: Ramki Gummadi, Saurabh Kumar, Junfeng Wen, Dale Schuurmans
- Abstract summary: We develop a unified perspective that re-expresses the underlying updates in terms of a limited choice of gradient form and scaling function.
We obtain novel yet well motivated updates that generalize existing algorithms in a way that can deliver benefits both in terms of convergence speed and final result quality.
- Score: 47.69337420768319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Approaches to policy optimization have been motivated from diverse
principles, based on how the parametric model is interpreted (e.g. value versus
policy representation) or how the learning objective is formulated, yet they
share a common goal of maximizing expected return. To better capture the
commonalities and identify key differences between policy optimization methods,
we develop a unified perspective that re-expresses the underlying updates in
terms of a limited choice of gradient form and scaling function. In particular,
we identify a parameterized space of approximate gradient updates for policy
optimization that is highly structured, yet covers both classical and recent
examples, including PPO. As a result, we obtain novel yet well motivated
updates that generalize existing algorithms in a way that can deliver benefits
both in terms of convergence speed and final result quality. An experimental
investigation demonstrates that the additional degrees of freedom provided in
the parameterized family of updates can be leveraged to obtain non-trivial
improvements both in synthetic domains and on popular deep RL benchmarks.
Related papers
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
We propose a novel perspective to investigate the design of large language models (LLMs)-based prompts.
We identify two pivotal factors in model parameter learning: update direction and update method.
In particular, we borrow the theoretical framework and learning methods from gradient-based optimization to design improved strategies.
arXiv Detail & Related papers (2024-02-27T15:05:32Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z) - Gradient Informed Proximal Policy Optimization [35.22712034665224]
We introduce a novel policy learning method that integrates analytical gradients from differentiable environments with the Proximal Policy Optimization (PPO) algorithm.
By adaptively modifying the alpha value, we can effectively manage the influence of analytical policy gradients during learning.
Our proposed approach outperforms baseline algorithms in various scenarios, such as function optimization, physics simulations, and traffic control environments.
arXiv Detail & Related papers (2023-12-14T07:50:21Z) - Acceleration in Policy Optimization [50.323182853069184]
We work towards a unifying paradigm for accelerating policy optimization methods in reinforcement learning (RL) by integrating foresight in the policy improvement step via optimistic and adaptive updates.
We define optimism as predictive modelling of the future behavior of a policy, and adaptivity as taking immediate and anticipatory corrective actions to mitigate errors from overshooting predictions or delayed responses to change.
We design an optimistic policy gradient algorithm, adaptive via meta-gradient learning, and empirically highlight several design choices pertaining to acceleration, in an illustrative task.
arXiv Detail & Related papers (2023-06-18T15:50:57Z) - A Novel Framework for Policy Mirror Descent with General
Parameterization and Linear Convergence [15.807079236265714]
We introduce a novel framework for policy optimization based on mirror descent.
We obtain the first result that guarantees linear convergence for a policy-gradient-based method involving general parameterization.
arXiv Detail & Related papers (2023-01-30T18:21:48Z) - Beyond the Policy Gradient Theorem for Efficient Policy Updates in
Actor-Critic Algorithms [10.356356383401566]
In Reinforcement Learning, the optimal action at a given state is dependent on policy decisions at subsequent states.
We discover that the policy gradient theorem prescribes policy updates that are slow to unlearn because of their structural symmetry with respect to the value target.
We introduce a modified policy update devoid of that flaw, and prove its guarantees of convergence to global optimality in $mathcalO(t-1)$ under classic assumptions.
arXiv Detail & Related papers (2022-02-15T15:04:10Z) - Near Optimal Policy Optimization via REPS [33.992374484681704]
emphrelative entropy policy search (REPS) has demonstrated successful policy learning on a number of simulated and real-world robotic domains.
There exist no guarantees on REPS's performance when using gradient-based solvers.
We introduce a technique that uses emphgenerative access to the underlying decision process to compute parameter updates that maintain favorable convergence to the optimal regularized policy.
arXiv Detail & Related papers (2021-03-17T16:22:59Z) - Iterative Amortized Policy Optimization [147.63129234446197]
Policy networks are a central feature of deep reinforcement learning (RL) algorithms for continuous control.
From the variational inference perspective, policy networks are a form of textitamortized optimization, optimizing network parameters rather than the policy distributions directly.
We demonstrate that iterative amortized policy optimization, yields performance improvements over direct amortization on benchmark continuous control tasks.
arXiv Detail & Related papers (2020-10-20T23:25:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.