Quantum Search with the Signless Laplacian
- URL: http://arxiv.org/abs/2501.17128v1
- Date: Tue, 28 Jan 2025 18:18:01 GMT
- Title: Quantum Search with the Signless Laplacian
- Authors: Molly E. McLaughlin, Thomas G. Wong,
- Abstract summary: We explore the signless Laplacian, which may arise in layered antiferromagnetic materials.
For some parameter regimes, the signless Laplacian yields the fastest search algorithm of the three, suggesting that it could be a new tool for developing faster quantum algorithms.
- Score: 0.0
- License:
- Abstract: Continuous-time quantum walks are typically effected by either the discrete Laplacian or the adjacency matrix. In this paper, we explore a third option: the signless Laplacian, which has applications in algebraic graph theory and may arise in layered antiferromagnetic materials. We explore spatial search on the complete bipartite graph, which is generally irregular and breaks the equivalence of the three quantum walks for regular graphs, and where the search oracle breaks the equivalence of the Laplacian and signless Laplacian quantum walks on bipartite graphs without the oracle. We prove that a uniform superposition over all the vertices of the graph partially evolves to the marked vertices in one partite set, with the choice of set depending on the jumping rate of the quantum walk. We boost this success probability to 1 by proving that a particular non-uniform initial state completely evolves to the marked vertices in one partite set, again depending on the jumping rate. For some parameter regimes, the signless Laplacian yields the fastest search algorithm of the three, suggesting that it could be a new tool for developing faster quantum algorithms.
Related papers
- Quantum Walk Search on Complete Multipartite Graph with Multiple Marked Vertices [7.922488341886121]
This paper examines the quantum walk search algorithm on complete multipartite graphs.
We employ the coined quantum walk model and achieve quadratic speedup.
We also provide the numerical simulation and circuit implementation of our quantum algorithm.
arXiv Detail & Related papers (2024-10-07T11:13:41Z) - Unifying quantum spatial search, state transfer and uniform sampling on graphs: simple and exact [2.871419116565751]
This article presents a novel and succinct algorithmic framework via alternating quantum walks.
It unifies quantum spatial search, state transfer and uniform sampling on a large class of graphs.
The approach is easy to use since it has a succinct formalism that depends only on the depth of the Laplacian eigenvalue set of the graph.
arXiv Detail & Related papers (2024-07-01T06:09:19Z) - Global Phase Helps in Quantum Search: Yet Another Look at the Welded Tree Problem [55.80819771134007]
In this paper, we give a short proof of the optimal linear hitting time for a welded tree problem by a discrete-time quantum walk.
The same technique can be applied to other 1-dimensional hierarchical graphs.
arXiv Detail & Related papers (2024-04-30T11:45:49Z) - Universal approach to deterministic spatial search via alternating
quantum walks [2.940962519388297]
We propose a novel approach for designing deterministic quantum search algorithms on a variety of graphs via alternating quantum walks.
Our approach is universal because it does not require an instance-specific analysis for different graphs.
arXiv Detail & Related papers (2023-07-30T05:14:19Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - One-Way Ticket to Las Vegas and the Quantum Adversary [78.33558762484924]
We show that quantum Las Vegas query complexity is exactly equal to the quantum adversary bound.
This is achieved by transforming a feasible solution to the adversary inversion problem into a quantum query algorithm.
arXiv Detail & Related papers (2023-01-05T11:05:22Z) - On Applying the Lackadaisical Quantum Walk Algorithm to Search for
Multiple Solutions on Grids [63.75363908696257]
The lackadaisical quantum walk is an algorithm developed to search graph structures whose vertices have a self-loop of weight $l$.
This paper addresses several issues related to applying the lackadaisical quantum walk to search for multiple solutions on grids successfully.
arXiv Detail & Related papers (2021-06-11T09:43:09Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - Continuous-time quantum walks in the presence of a quadratic
perturbation [55.41644538483948]
We address the properties of continuous-time quantum walks with Hamiltonians of the form $mathcalH= L + lambda L2$.
We consider cycle, complete, and star graphs because paradigmatic models with low/high connectivity and/or symmetry.
arXiv Detail & Related papers (2020-05-13T14:53:36Z) - Analysis of Lackadaisical Quantum Walks [0.0]
The lackadaisical quantum walk is a quantum analogue of the lazy random walk obtained by adding a self-loop to each.
We analytically prove that lackadaisical quantum walks can find a unique marked.
vertebrae on any regular locally arc-transitive graph with constant success probability.
quadratically faster than the hitting time.
arXiv Detail & Related papers (2020-02-26T00:40:25Z) - Search on Vertex-Transitive Graphs by Lackadaisical Quantum Walk [0.0]
The lackadaisical quantum walk is a discrete-time, coined quantum walk on a graph.
It can improve spatial search on the complete graph, discrete torus, cycle, and regular complete bipartite graph.
We present a number of numerical simulations supporting this hypothesis.
arXiv Detail & Related papers (2020-02-26T00:10:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.