SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model Post-training
- URL: http://arxiv.org/abs/2501.17161v1
- Date: Tue, 28 Jan 2025 18:59:44 GMT
- Title: SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model Post-training
- Authors: Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V. Le, Sergey Levine, Yi Ma,
- Abstract summary: Supervised fine-tuning (SFT) and reinforcement learning (RL) are widely used post-training techniques for foundation models.
This paper studies the difference between SFT and RL on generalization and memorization.
We show that RL, especially when trained with an outcome-based reward, generalizes across both rule-based textual and visual variants.
- Score: 127.47044960572659
- License:
- Abstract: Supervised fine-tuning (SFT) and reinforcement learning (RL) are widely used post-training techniques for foundation models. However, their roles in enhancing model generalization capabilities remain unclear. This paper studies the difference between SFT and RL on generalization and memorization, focusing on text-based rule variants and visual variants. We introduce GeneralPoints, an arithmetic reasoning card game, and adopt V-IRL, a real-world navigation environment, to assess how models trained with SFT and RL generalize to unseen variants in both textual and visual domains. We show that RL, especially when trained with an outcome-based reward, generalizes across both rule-based textual and visual variants. SFT, in contrast, tends to memorize training data and struggles to generalize out-of-distribution scenarios. Further analysis reveals that RL improves the model's underlying visual recognition capabilities, contributing to its enhanced generalization in the visual domain. Despite RL's superior generalization, we show that SFT remains essential for effective RL training; SFT stabilizes the model's output format, enabling subsequent RL to achieve its performance gains. These findings demonstrates the capability of RL for acquiring generalizable knowledge in complex, multi-modal tasks.
Related papers
- The Surprising Ineffectiveness of Pre-Trained Visual Representations for Model-Based Reinforcement Learning [8.36595587335589]
Visual Reinforcement Learning methods often require extensive amounts of data.
Model-based RL (MBRL) offers a potential solution with efficient data utilization through planning.
MBRL lacks generalization capabilities for real-world tasks.
arXiv Detail & Related papers (2024-11-15T13:21:26Z) - RLInspect: An Interactive Visual Approach to Assess Reinforcement Learning Algorithm [0.0]
Reinforcement Learning (RL) is a rapidly growing area of machine learning.
Assessing RL models can be challenging, which makes it difficult to interpret their behaviour.
We have developed RLInspect, an interactive visual analytic tool.
It takes into account different components of the RL model - state, action, agent architecture and reward, and provides a more comprehensive view of the RL training.
arXiv Detail & Related papers (2024-11-13T07:24:14Z) - Teaching Large Language Models to Reason with Reinforcement Learning [38.17625148525193]
Reinforcement Learning from Human Feedback (textbfRLHF) has emerged as a dominant approach for aligning LLM outputs with human preferences.
Inspired by the success of RLHF, we study the performance of multiple algorithms that learn from feedback.
arXiv Detail & Related papers (2024-03-07T16:36:29Z) - Leveraging Reward Consistency for Interpretable Feature Discovery in
Reinforcement Learning [69.19840497497503]
It is argued that the commonly used action matching principle is more like an explanation of deep neural networks (DNNs) than the interpretation of RL agents.
We propose to consider rewards, the essential objective of RL agents, as the essential objective of interpreting RL agents.
We verify and evaluate our method on the Atari 2600 games as well as Duckietown, a challenging self-driving car simulator environment.
arXiv Detail & Related papers (2023-09-04T09:09:54Z) - RL-ViGen: A Reinforcement Learning Benchmark for Visual Generalization [23.417092819516185]
We introduce RL-ViGen: a novel Reinforcement Learning Benchmark for Visual Generalization.
RL-ViGen contains diverse tasks and a wide spectrum of generalization types, thereby facilitating the derivation of more reliable conclusions.
Our aspiration is that RL-ViGen will serve as a catalyst in the future creation of universal visual generalization RL agents.
arXiv Detail & Related papers (2023-07-15T05:45:37Z) - Contrastive Learning as Goal-Conditioned Reinforcement Learning [147.28638631734486]
In reinforcement learning (RL), it is easier to solve a task if given a good representation.
While deep RL should automatically acquire such good representations, prior work often finds that learning representations in an end-to-end fashion is unstable.
We show (contrastive) representation learning methods can be cast as RL algorithms in their own right.
arXiv Detail & Related papers (2022-06-15T14:34:15Z) - INFOrmation Prioritization through EmPOWERment in Visual Model-Based RL [90.06845886194235]
We propose a modified objective for model-based reinforcement learning (RL)
We integrate a term inspired by variational empowerment into a state-space model based on mutual information.
We evaluate the approach on a suite of vision-based robot control tasks with natural video backgrounds.
arXiv Detail & Related papers (2022-04-18T23:09:23Z) - Contextualize Me -- The Case for Context in Reinforcement Learning [49.794253971446416]
Contextual Reinforcement Learning (cRL) provides a framework to model such changes in a principled manner.
We show how cRL contributes to improving zero-shot generalization in RL through meaningful benchmarks and structured reasoning about generalization tasks.
arXiv Detail & Related papers (2022-02-09T15:01:59Z) - POAR: Efficient Policy Optimization via Online Abstract State
Representation Learning [6.171331561029968]
State Representation Learning (SRL) is proposed to specifically learn to encode task-relevant features from complex sensory data into low-dimensional states.
We introduce a new SRL prior called domain resemblance to leverage expert demonstration to improve SRL interpretations.
We empirically verify POAR to efficiently handle tasks in high dimensions and facilitate training real-life robots directly from scratch.
arXiv Detail & Related papers (2021-09-17T16:52:03Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
We propose an information theoretic regularization objective and an annealing-based optimization method to achieve better generalization ability in RL agents.
We demonstrate the extreme generalization benefits of our approach in different domains ranging from maze navigation to robotic tasks.
This work provides a principled way to improve generalization in RL by gradually removing information that is redundant for task-solving.
arXiv Detail & Related papers (2020-08-03T02:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.