論文の概要: Deep Learning in Wireless Communication Receiver: A Survey
- arxiv url: http://arxiv.org/abs/2501.17184v1
- Date: Sat, 25 Jan 2025 16:37:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:52:56.210894
- Title: Deep Learning in Wireless Communication Receiver: A Survey
- Title(参考訳): 無線通信受信機におけるディープラーニング
- Authors: Shadman Rahman Doha, Ahmed Abdelhadi,
- Abstract要約: ディープニューラルネットワーク(DNN)を利用した無線通信受信機の設計
本稿では,多層パーセプトロン(MLP),畳み込みニューラルネットワーク(CNN),リカレントニューラルネットワーク(RNN),生成的対向ネットワーク(GAN)など,さまざまなディープラーニングアーキテクチャについて検討する。
同期、チャネル推定、等化、時空間復号化、復号化、復号化、干渉キャンセル、分類変調などの受信機の鍵モジュールについて議論する。
- 参考スコア(独自算出の注目度): 1.6925194411091724
- License:
- Abstract: The design of wireless communication receivers to enhance signal processing in complex and dynamic environments is going through a transformation by leveraging deep neural networks (DNNs). Traditional wireless receivers depend on mathematical models and algorithms, which do not have the ability to adapt or learn from data. In contrast, deep learning-based receivers are more suitable for modern wireless communication systems because they can learn from data and adapt accordingly. This survey explores various deep learning architectures such as multilayer perceptrons (MLPs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs), and autoencoders, focusing on their application in the design of wireless receivers. Key modules of a receiver such as synchronization, channel estimation, equalization, space-time decoding, demodulation, decoding, interference cancellation, and modulation classification are discussed in the context of advanced wireless technologies like orthogonal frequency division multiplexing (OFDM), multiple input multiple output (MIMO), semantic communication, task-oriented communication, and next-generation (Next-G) networks. The survey not only emphasizes the potential of deep learning-based receivers in future wireless communication but also investigates different challenges of deep learning-based receivers, such as data availability, security and privacy concerns, model interpretability, computational complexity, and integration with legacy systems.
- Abstract(参考訳): 複雑でダイナミックな環境で信号処理を強化する無線通信受信機の設計は、ディープニューラルネットワーク(DNN)を活用して、トランスフォーメーションを経ている。
従来の無線受信機は数学的モデルやアルゴリズムに依存しており、データへの適応や学習ができない。
対照的に、ディープラーニングベースの受信機は、データから学習し、それに応じて適応できるため、現代の無線通信システムに適している。
本調査では,マルチ層パーセプトロン(MLP),畳み込みニューラルネットワーク(CNN),リカレントニューラルネットワーク(RNN),GAN(Generative Adversarial Network),オートエンコーダなど,さまざまなディープラーニングアーキテクチャについて検討し,無線受信機の設計に焦点をあてる。
直交周波数分割多重化(OFDM)、多重入力多重出力(MIMO)、セマンティック通信、タスク指向通信、次世代(Next-G)ネットワークといった先進無線技術の文脈において、受信機の主要モジュールである同期、チャネル推定、等化、時空間復号化、復号化、復号化、干渉キャンセル、変調分類について論じる。
この調査は、将来の無線通信におけるディープラーニングベースの受信機の可能性を強調するだけでなく、データ可用性、セキュリティとプライバシの懸念、モデルの解釈可能性、計算複雑性、レガシーシステムとの統合といった、ディープラーニングベースの受信機に関するさまざまな課題についても調査している。
関連論文リスト
- Modeling of Time-varying Wireless Communication Channel with Fading and Shadowing [0.0]
本稿では,ディープラーニングニューラルネットワークと混合密度ネットワークモデルを組み合わせて,受信電力の条件付き確率密度関数を導出する手法を提案する。
経路損失とノイズを伴う中上フェーディングチャネルモデルと対数正規シャドーイングチャネルモデルの実験により、新しいアプローチは従来のディープラーニングベースチャネルモデルよりも統計的に正確で、高速で、より堅牢であることが示された。
論文 参考訳(メタデータ) (2024-05-13T21:30:50Z) - Will 6G be Semantic Communications? Opportunities and Challenges from
Task Oriented and Secure Communications to Integrated Sensing [49.83882366499547]
本稿では,マルチタスク学習を統合した次世代(NextG)ネットワークにおけるタスク指向およびセマンティックコミュニケーションの機会と課題について検討する。
我々は、送信側の専用エンコーダと受信側の複数のタスク固有のデコーダを表すディープニューラルネットワークを用いる。
トレーニングとテストの段階において、敵対的攻撃に起因する潜在的な脆弱性を精査する。
論文 参考訳(メタデータ) (2024-01-03T04:01:20Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Enabling the Wireless Metaverse via Semantic Multiverse Communication [82.47169682083806]
無線ネットワーク上のメタバースは、第6世代(6G)無線システムの新たなユースケースである。
メタバースを人間/機械エージェント固有のセマンティック・マルチバース(SM)に分解する新しいセマンティック・コミュニケーション・フレームワークを提案する。
各エージェントに格納されたSMは、セマンティックエンコーダとジェネレータから構成され、生成人工知能(AI)の最近の進歩を活用する。
論文 参考訳(メタデータ) (2022-12-13T21:21:07Z) - Neuromorphic Wireless Cognition: Event-Driven Semantic Communications
for Remote Inference [32.0035037154674]
本稿ではニューロモルフィックな無線インターネット・オブ・Thingsシステムのためのエンドツーエンドの設計を提案する。
各センサ装置は、ニューロモルフィックセンサと、スパイキングニューラルネットワーク(SNN)と、複数のアンテナを備えたインパルス無線送信機を備える。
パイロット、SNNの符号化、SNNの復号化、ハイパーネットワークは、複数のチャネル実現を通じて共同で訓練される。
論文 参考訳(メタデータ) (2022-06-13T11:13:39Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
Reconfigurable Intelligent Surfaces(RIS)の新たな技術は、スマート無線環境の実現手段として準備されている。
RISは、無線媒体上の電磁信号の伝搬を動的に制御するための、高度にスケーラブルで低コストで、ハードウェア効率が高く、ほぼエネルギーニュートラルなソリューションを提供する。
このような再構成可能な無線環境におけるRISの密配置に関する大きな課題の1つは、複数の準曲面の効率的な構成である。
論文 参考訳(メタデータ) (2022-05-08T06:21:33Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
将来的な通信網は、異種無線デバイスの成長に対応するために、少ないスペクトルに対処する必要がある。
我々は、深層ニューラルネットワークに基づくマルチタスク学習フレームワークの可能性を利用して、変調と信号分類タスクを同時に学習する。
公共利用のための包括的ヘテロジニアス無線信号データセットを提供する。
論文 参考訳(メタデータ) (2022-02-26T14:51:02Z) - Cognitive Learning-Aided Multi-Antenna Communications [22.51807198305316]
ディープラーニング(DL)は、認知システムの本質的な特徴の実現に不可欠である。
本稿では,多アンテナ無線通信に認知行動を与えるためのDLに基づく様々な手法のシナプスについて述べる。
論文 参考訳(メタデータ) (2020-10-07T03:08:31Z) - Intelligent Reflecting Surface Aided Wireless Communications: A Tutorial [64.77665786141166]
インテリジェント反射面(Intelligent Reflecting Surface、IRS)は、無線ネットワークにおける電波伝搬を工学する技術である。
IRSは無線チャネルを動的に変更して通信性能を向上させることができる。
その大きな可能性にもかかわらず、IRSは無線ネットワークに効率的に統合されるための新たな課題に直面している。
論文 参考訳(メタデータ) (2020-07-06T13:59:09Z) - Deep Learning for Wireless Communications [3.7506111080592386]
まず、オートエンコーダを用いたエンドツーエンド通信システムの設計にディープラーニングがどのように使われているかを説明する。
次に、スペクトル状況認識におけるディープラーニングの利点を示す。
最後に,無線通信セキュリティにおけるディープラーニングの応用について論じる。
論文 参考訳(メタデータ) (2020-05-12T21:58:44Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。