論文の概要: A 1-D CNN inference engine for constrained platforms
- arxiv url: http://arxiv.org/abs/2501.17269v1
- Date: Tue, 28 Jan 2025 19:57:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:53:42.527460
- Title: A 1-D CNN inference engine for constrained platforms
- Title(参考訳): 制約付きプラットフォームのための1次元CNN推論エンジン
- Authors: Ishwar Mudraje, Kai Vogelgesang, Thorsten Herfet,
- Abstract要約: 1D-CNNは、様々な領域の時系列分類に使用される。
エッジデバイスでは、通常は制約がありシングルスレッドである場合、そのような実装は時間クリティカルなタスクに干渉する可能性がある。
本稿では,サンプル間隔間の操作をインターリーブする推論手法を提案する。
- 参考スコア(独自算出の注目度): 0.6827423171182153
- License:
- Abstract: 1D-CNNs are used for time series classification in various domains with a high degree of accuracy. Most implementations collect the incoming data samples in a buffer before performing inference on it. On edge devices, which are typically constrained and single-threaded, such an implementation may interfere with time-critical tasks. One such task is that of sample acquisition. In this work, we propose an inference scheme that interleaves the convolution operations between sample intervals, which allows us to reduce the inference latency. Furthermore, our scheme is well-suited for storing data in ring buffers, yielding a small memory footprint. We demonstrate these improvements by comparing our approach to TFLite's inference method, giving a 10% reduction in the inference delay while almost halving the memory usage. Our approach is feasible on common consumer devices, which we show using an AVR-based Arduino board and an ARM-based Arduino board.
- Abstract(参考訳): 1D-CNNは、様々な領域の時系列分類に高い精度で使用される。
ほとんどの実装は、バッファで受信したデータサンプルを収集し、それに対して推論を実行する。
エッジデバイスでは、通常は制約がありシングルスレッドである場合、そのような実装は時間クリティカルなタスクに干渉する可能性がある。
そのような課題の1つはサンプル取得である。
本研究では,サンプル間隔間の畳み込み操作をインターリーブする推論手法を提案する。
さらに,本手法はリングバッファにデータを格納するのに適しており,メモリフットプリントが小さい。
提案手法をTFLiteの推論手法と比較することにより,メモリ使用量の半減を図りながら,推論遅延の10%削減を実現した。
私たちのアプローチは、AVRベースのArduinoボードとARMベースのArduinoボードを使用して、一般的なコンシューマデバイスで実現可能です。
関連論文リスト
- AsyncDiff: Parallelizing Diffusion Models by Asynchronous Denoising [49.785626309848276]
AsyncDiffは、複数のデバイスにまたがるモデル並列化を可能にする、普遍的でプラグアンドプレイのアクセラレーションスキームである。
安定拡散 v2.1 では、AsyncDiff は2.7倍の速度アップと4.0倍のスピードアップを実現し、CLIPスコアの 0.38 をわずかに削減した。
我々の実験は、AsyncDiffがビデオ拡散モデルに容易に適用でき、性能を向上できることを示した。
論文 参考訳(メタデータ) (2024-06-11T03:09:37Z) - An Efficient Rehearsal Scheme for Catastrophic Forgetting Mitigation during Multi-stage Fine-tuning [55.467047686093025]
このような忘れを緩和するための一般的なアプローチは、微調整中に以前のタスクからサンプルをリハーサルすることである。
側方損傷のリハーサルを優先するサンプリング手法である textttbf mix-cd を提案する。
我々の手法は計算効率が高く、実装が容易で、計算制約のある設定においていくつかの主要な連続学習手法より優れています。
論文 参考訳(メタデータ) (2024-02-12T22:32:12Z) - Favour: FAst Variance Operator for Uncertainty Rating [0.034530027457862]
機械学習予測を解釈するための重要なアプローチとしてベイズニューラルネットワーク(BNN)が登場した。
後部分布からサンプリングすることで、データサイエンティストは推論の不確実性を推定することができる。
以前の研究は、ネットワークを介して後部の第1モーメントと第2モーメントを伝播することを提案した。
この方法はサンプリングよりも遅いため、伝播分散を近似する必要がある。
私たちの貢献は、より原則化された分散伝播フレームワークです。
論文 参考訳(メタデータ) (2023-11-21T22:53:20Z) - Design and Prototyping Distributed CNN Inference Acceleration in Edge
Computing [85.74517957717363]
HALPはエッジコンピューティングにおけるエッジデバイス(ED)間のシームレスなコラボレーションを設計することで推論を加速する。
実験により、分散推論HALPはVGG-16に対して1.7倍の推論加速を達成することが示された。
分散推論HALPを用いたモデル選択は,サービスの信頼性を著しく向上させることができる。
論文 参考訳(メタデータ) (2022-11-24T19:48:30Z) - Efficient NLP Inference at the Edge via Elastic Pipelining [0.42970700836450487]
WRXは2つの新しい手法によってレイテンシ/メモリの緊張を緩和する。
We build WRX and evaluation that on a range of NLP tasks, under a practical range of target latencies, on both CPU and GPU。
論文 参考訳(メタデータ) (2022-07-11T17:15:57Z) - MAPLE-Edge: A Runtime Latency Predictor for Edge Devices [80.01591186546793]
汎用ハードウェアの最先端遅延予測器であるMAPLEのエッジデバイス指向拡張であるMAPLE-Edgeを提案する。
MAPLEと比較して、MAPLE-Edgeはより小さなCPUパフォーマンスカウンタを使用して、ランタイムとターゲットデバイスプラットフォームを記述することができる。
また、共通ランタイムを共有するデバイスプール上でトレーニングを行うMAPLEとは異なり、MAPLE-Edgeは実行時に効果的に一般化できることを示す。
論文 参考訳(メタデータ) (2022-04-27T14:00:48Z) - Cadence: A Practical Time-series Partitioning Algorithm for Unlabeled
IoT Sensor Streams [1.2330326247154968]
提案アルゴリズムは,異なるアプリケーションにわたる時系列イベントを頑健に検出できることを示す。
環境検知に基づくアクティビティ認識のための実世界のIoTデプロイメントにおいて、その適用性を実証する。
論文 参考訳(メタデータ) (2021-12-06T21:13:18Z) - Parallel Actors and Learners: A Framework for Generating Scalable RL
Implementations [14.432131909590824]
強化学習(Reinforcement Learning, RL)は、ロボット工学、ゲーム、医療などの応用分野において大きな成功を収めている。
現在の実装は、不規則なメモリアクセスや同期オーバーヘッドといった問題により、パフォーマンスが劣っている。
マルチコアシステム上でスケーラブルな強化学習を実現するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-03T21:00:53Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
既存のKRRの実装では、すべてのデータがメインメモリに格納される必要がある。
KRRのストリーミング版であるStreaMRAKを提案する。
本稿では,2つの合成問題と2重振り子の軌道予測について紹介する。
論文 参考訳(メタデータ) (2021-08-23T21:03:09Z) - Rethinking Space-Time Networks with Improved Memory Coverage for
Efficient Video Object Segmentation [68.45737688496654]
各オブジェクトのマスク特徴を再エンコードすることなく,フレーム間の直接対応性を確立する。
対応によって、現在のクエリフレーム内の全てのノードは、過去の特徴を連想的に集約することによって推測される。
すべてのメモリノードにコントリビュートする機会があることを検証し、そのような多彩な投票がメモリ効率と推論精度の両方に有益であることを示した。
論文 参考訳(メタデータ) (2021-06-09T16:50:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。