論文の概要: MDDM: A Molecular Dynamics Diffusion Model to Predict Particle Self-Assembly
- arxiv url: http://arxiv.org/abs/2501.17319v1
- Date: Tue, 28 Jan 2025 22:21:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:53:05.953232
- Title: MDDM: A Molecular Dynamics Diffusion Model to Predict Particle Self-Assembly
- Title(参考訳): MDDM:粒子自己集合予測のための分子動力学拡散モデル
- Authors: Kevin Ferguson, Yu-hsuan Chen, Levent Burak Kara,
- Abstract要約: 分子動力学拡散モデルでは、与えられた入力対ポテンシャル関数の有効な出力を予測することができる。
このモデルは、非条件および条件付き生成タスクのベースライン点雲拡散モデルよりも大幅に優れている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The discovery and study of new material systems relies on molecular simulations that often come with significant computational expense. We propose MDDM, a Molecular Dynamics Diffusion Model, which is capable of predicting a valid output conformation for a given input pair potential function. After training MDDM on a large dataset of molecular dynamics self-assembly results, the proposed model can convert uniform noise into a meaningful output particle structure corresponding to an arbitrary input potential. The model's architecture has domain-specific properties built-in, such as satisfying periodic boundaries and being invariant to translation. The model significantly outperforms the baseline point-cloud diffusion model for both unconditional and conditional generation tasks.
- Abstract(参考訳): 新しい物質系の発見と研究は、しばしばかなりの計算コストを伴う分子シミュレーションに依存している。
本稿では,与えられた入力対ポテンシャル関数に対して有効な出力コンフォメーションを予測できる分子動力学拡散モデルMDDMを提案する。
分子動力学の自己組立結果の大規模なデータセット上でMDDMを訓練した後, 提案したモデルにより, 均一ノイズを任意の入力電位に対応する有意な出力粒子構造に変換することができる。
モデルのアーキテクチャには、周期的境界を満たすことや翻訳に不変なようなドメイン固有の特性が組み込まれている。
このモデルは、非条件および条件付き生成タスクのベースライン点雲拡散モデルよりも大幅に優れている。
関連論文リスト
- MING: A Functional Approach to Learning Molecular Generative Models [46.189683355768736]
本稿では,関数表現に基づく分子生成モデル学習のための新しいパラダイムを提案する。
本稿では,関数空間における分子分布を学習する拡散モデルである分子インプリシットニューラルジェネレーション(MING)を提案する。
論文 参考訳(メタデータ) (2024-10-16T13:02:02Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
本稿では,確率論的推論の課題として,事前学習したMDMを操る作業を行う新しいフレームワークであるDDPPを紹介する。
私たちのフレームワークは、3つの新しい目標のファミリーにつながります。
Wet-lab Validation(ウェット・ラブ・バリデーション)を用いて,報酬最適化タンパク質配列の過渡的発現を観察する。
論文 参考訳(メタデータ) (2024-10-10T17:18:30Z) - Generative Modeling of Molecular Dynamics Trajectories [12.255021091552441]
データからMDの柔軟なマルチタスクサロゲートモデルを学ぶためのパラダイムとして,分子軌道の生成モデルを提案する。
このような生成モデルは,前方シミュレーションや遷移経路サンプリング,軌道上アップサンプリングといった多様なタスクに適応可能であることを示す。
論文 参考訳(メタデータ) (2024-09-26T13:02:28Z) - LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
テキスト条件付き分子生成のための遅延拡散モデル LDMol を提案する。
LDMolは、学習可能で構造的に有意な特徴空間を生成する分子オートエンコーダを含む。
我々は,LDMolを分子間検索やテキスト誘導分子編集などの下流タスクに適用できることを示す。
論文 参考訳(メタデータ) (2024-05-28T04:59:13Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Variational Autoencoding Molecular Graphs with Denoising Diffusion
Probabilistic Model [0.0]
本稿では,階層構造を確率論的潜在ベクトルに組み込んだ新しい深層生成モデルを提案する。
本モデルは,物理特性と活性に関する小さなデータセットを用いて,分子特性予測のための有効な分子潜在ベクトルを設計できることを実証する。
論文 参考訳(メタデータ) (2023-07-02T17:29:41Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Embedded-physics machine learning for coarse-graining and collective
variable discovery without data [3.222802562733787]
基礎となる物理を一貫して組み込む新しい学習フレームワークを提案する。
原子間力場の形で利用可能な物理学を完全に組み込んだ逆クルバック・リーブラー分岐に基づく新しい目的を提案する。
本研究は,バイモーダルポテンシャルエネルギー関数とアラニンジペプチドに対するCVの予測能力および物理的意義の観点からアルゴリズムの進歩を実証する。
論文 参考訳(メタデータ) (2020-02-24T10:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。