Embedded-physics machine learning for coarse-graining and collective
variable discovery without data
- URL: http://arxiv.org/abs/2002.10148v1
- Date: Mon, 24 Feb 2020 10:28:41 GMT
- Title: Embedded-physics machine learning for coarse-graining and collective
variable discovery without data
- Authors: Markus Sch\"oberl, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis
- Abstract summary: We present a novel learning framework that consistently embeds underlying physics.
We propose a novel objective based on reverse Kullback-Leibler divergence that fully incorporates the available physics in the form of the atomistic force field.
We demonstrate the algorithmic advances in terms of predictive ability and the physical meaning of the revealed CVs for a bimodal potential energy function and the alanine dipeptide.
- Score: 3.222802562733787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel learning framework that consistently embeds underlying
physics while bypassing a significant drawback of most modern, data-driven
coarse-grained approaches in the context of molecular dynamics (MD), i.e., the
availability of big data. The generation of a sufficiently large training
dataset poses a computationally demanding task, while complete coverage of the
atomistic configuration space is not guaranteed. As a result, the explorative
capabilities of data-driven coarse-grained models are limited and may yield
biased "predictive" tools. We propose a novel objective based on reverse
Kullback-Leibler divergence that fully incorporates the available physics in
the form of the atomistic force field. Rather than separating model learning
from the data-generation procedure - the latter relies on simulating atomistic
motions governed by force fields - we query the atomistic force field at sample
configurations proposed by the predictive coarse-grained model. Thus, learning
relies on the evaluation of the force field but does not require any MD
simulation. The resulting generative coarse-grained model serves as an
efficient surrogate model for predicting atomistic configurations and
estimating relevant observables. Beyond obtaining a predictive coarse-grained
model, we demonstrate that in the discovered lower-dimensional representation,
the collective variables (CVs) are related to physicochemical properties, which
are essential for gaining understanding of unexplored complex systems. We
demonstrate the algorithmic advances in terms of predictive ability and the
physical meaning of the revealed CVs for a bimodal potential energy function
and the alanine dipeptide.
Related papers
- Towards a Theoretical Understanding of Memorization in Diffusion Models [76.85077961718875]
Diffusion probabilistic models (DPMs) are being employed as mainstream models for Generative Artificial Intelligence (GenAI)
We provide a theoretical understanding of memorization in both conditional and unconditional DPMs under the assumption of model convergence.
We propose a novel data extraction method named textbfSurrogate condItional Data Extraction (SIDE) that leverages a time-dependent classifier trained on the generated data as a surrogate condition to extract training data from unconditional DPMs.
arXiv Detail & Related papers (2024-10-03T13:17:06Z) - Enhanced sampling of robust molecular datasets with uncertainty-based
collective variables [0.0]
We propose a method that leverages uncertainty as the collective variable (CV) to guide the acquisition of chemically-relevant data points.
This approach employs a Gaussian Mixture Model-based uncertainty metric from a single model as the CV for biased molecular dynamics simulations.
arXiv Detail & Related papers (2024-02-06T06:42:51Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Generative structured normalizing flow Gaussian processes applied to
spectroscopic data [4.0773490083614075]
In the physical sciences, limited training data may not adequately characterize future observed data.
It is critical that models adequately indicate uncertainty, particularly when they may be asked to extrapolate.
We demonstrate the methodology on laser-induced breakdown spectroscopy data from the ChemCam instrument onboard the Mars rover Curiosity.
arXiv Detail & Related papers (2022-12-14T23:57:46Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - A physics-informed operator regression framework for extracting
data-driven continuum models [0.0]
We present a framework for discovering continuum models from high fidelity molecular simulation data.
Our approach applies a neural network parameterization of governing physics in modal space.
We demonstrate the effectiveness of our framework for a variety of physics, including local and nonlocal diffusion processes and single and multiphase flows.
arXiv Detail & Related papers (2020-09-25T01:13:51Z) - A probabilistic generative model for semi-supervised training of
coarse-grained surrogates and enforcing physical constraints through virtual
observables [3.8073142980733]
This paper provides a flexible, probabilistic framework that accounts for physical structure and information both in the training objectives and in the surrogate model itself.
We advocate a probabilistic model in which equalities that are available from the physics can be introduced as virtual observables and can provide additional information through the likelihood.
arXiv Detail & Related papers (2020-06-02T17:14:36Z) - Incorporating physical constraints in a deep probabilistic machine
learning framework for coarse-graining dynamical systems [7.6146285961466]
This paper offers a data-based, probablistic perspective that enables the quantification of predictive uncertainties.
We formulate the coarse-graining process by employing a probabilistic state-space model.
It is capable of reconstructing the evolution of the full, fine-scale system.
arXiv Detail & Related papers (2019-12-30T16:07:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.