Value Function Decomposition in Markov Recommendation Process
- URL: http://arxiv.org/abs/2501.17409v2
- Date: Sat, 01 Feb 2025 12:15:50 GMT
- Title: Value Function Decomposition in Markov Recommendation Process
- Authors: Xiaobei Wang, Shuchang Liu, Qingpeng Cai, Xiang Li, Lantao Hu, Han li, Guangming Xie,
- Abstract summary: We propose an online reinforcement learning framework to improve recommender performance.
We show that these two factors can be separately approximated by decomposing the original temporal difference loss.
The disentangled learning framework can achieve a more accurate estimation with faster learning and improved robustness against action exploration.
- Score: 19.082512423102855
- License:
- Abstract: Recent advances in recommender systems have shown that user-system interaction essentially formulates long-term optimization problems, and online reinforcement learning can be adopted to improve recommendation performance. The general solution framework incorporates a value function that estimates the user's expected cumulative rewards in the future and guides the training of the recommendation policy. To avoid local maxima, the policy may explore potential high-quality actions during inference to increase the chance of finding better future rewards. To accommodate the stepwise recommendation process, one widely adopted approach to learning the value function is learning from the difference between the values of two consecutive states of a user. However, we argue that this paradigm involves a challenge of Mixing Random Factors: there exist two random factors from the stochastic policy and the uncertain user environment, but they are not separately modeled in the standard temporal difference (TD) learning, which may result in a suboptimal estimation of the long-term rewards and less effective action exploration. As a solution, we show that these two factors can be separately approximated by decomposing the original temporal difference loss. The disentangled learning framework can achieve a more accurate estimation with faster learning and improved robustness against action exploration. As an empirical verification of our proposed method, we conduct offline experiments with simulated online environments built on the basis of public datasets.
Related papers
- A Unified Linear Programming Framework for Offline Reward Learning from Human Demonstrations and Feedback [6.578074497549894]
Inverse Reinforcement Learning (IRL) and Reinforcement Learning from Human Feedback (RLHF) are pivotal methodologies in reward learning.
This paper introduces a novel linear programming (LP) framework tailored for offline reward learning.
arXiv Detail & Related papers (2024-05-20T23:59:26Z) - Towards Off-Policy Reinforcement Learning for Ranking Policies with
Human Feedback [47.03475305565384]
We propose a new off-policy value ranking (VR) algorithm that can simultaneously maximize user long-term rewards and optimize the ranking metric offline.
We show that the EM process guides the leaned policy to enjoy the benefit of integration of the future reward and ranking metric, and learn without any online interactions.
arXiv Detail & Related papers (2024-01-17T04:19:33Z) - Adversarial Batch Inverse Reinforcement Learning: Learn to Reward from
Imperfect Demonstration for Interactive Recommendation [23.048841953423846]
We focus on the problem of learning to reward, which is fundamental to reinforcement learning.
Previous approaches either introduce additional procedures for learning to reward, thereby increasing the complexity of optimization.
We propose a novel batch inverse reinforcement learning paradigm that achieves the desired properties.
arXiv Detail & Related papers (2023-10-30T13:43:20Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Imitation Learning by State-Only Distribution Matching [2.580765958706854]
Imitation Learning from observation describes policy learning in a similar way to human learning.
We propose a non-adversarial learning-from-observations approach, together with an interpretable convergence and performance metric.
arXiv Detail & Related papers (2022-02-09T08:38:50Z) - Robust and Adaptive Temporal-Difference Learning Using An Ensemble of
Gaussian Processes [70.80716221080118]
The paper takes a generative perspective on policy evaluation via temporal-difference (TD) learning.
The OS-GPTD approach is developed to estimate the value function for a given policy by observing a sequence of state-reward pairs.
To alleviate the limited expressiveness associated with a single fixed kernel, a weighted ensemble (E) of GP priors is employed to yield an alternative scheme.
arXiv Detail & Related papers (2021-12-01T23:15:09Z) - Policy Gradient Bayesian Robust Optimization for Imitation Learning [49.881386773269746]
We derive a novel policy gradient-style robust optimization approach, PG-BROIL, to balance expected performance and risk.
Results suggest PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse.
arXiv Detail & Related papers (2021-06-11T16:49:15Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z) - Optimizing for the Future in Non-Stationary MDPs [52.373873622008944]
We present a policy gradient algorithm that maximizes a forecast of future performance.
We show that our algorithm, called Prognosticator, is more robust to non-stationarity than two online adaptation techniques.
arXiv Detail & Related papers (2020-05-17T03:41:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.