Towards Off-Policy Reinforcement Learning for Ranking Policies with
Human Feedback
- URL: http://arxiv.org/abs/2401.08959v1
- Date: Wed, 17 Jan 2024 04:19:33 GMT
- Title: Towards Off-Policy Reinforcement Learning for Ranking Policies with
Human Feedback
- Authors: Teng Xiao, Suhang Wang
- Abstract summary: We propose a new off-policy value ranking (VR) algorithm that can simultaneously maximize user long-term rewards and optimize the ranking metric offline.
We show that the EM process guides the leaned policy to enjoy the benefit of integration of the future reward and ranking metric, and learn without any online interactions.
- Score: 47.03475305565384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Probabilistic learning to rank (LTR) has been the dominating approach for
optimizing the ranking metric, but cannot maximize long-term rewards.
Reinforcement learning models have been proposed to maximize user long-term
rewards by formulating the recommendation as a sequential decision-making
problem, but could only achieve inferior accuracy compared to LTR counterparts,
primarily due to the lack of online interactions and the characteristics of
ranking. In this paper, we propose a new off-policy value ranking (VR)
algorithm that can simultaneously maximize user long-term rewards and optimize
the ranking metric offline for improved sample efficiency in a unified
Expectation-Maximization (EM) framework. We theoretically and empirically show
that the EM process guides the leaned policy to enjoy the benefit of
integration of the future reward and ranking metric, and learn without any
online interactions. Extensive offline and online experiments demonstrate the
effectiveness of our methods.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Optimizing Preference Alignment with Differentiable NDCG Ranking [9.594183083553245]
Recent studies have uncovered a substantial discrepancy between the theoretical aspirations of preference learning and its real-world results.
This paper introduces underlineDirect underlineRanking underlinePreference underlineOptimization (O), a novel method that views human preference alignment as a Learning-to-Rank task.
arXiv Detail & Related papers (2024-10-17T08:54:57Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [56.24431208419858]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.
We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - LIRE: listwise reward enhancement for preference alignment [27.50204023448716]
We propose a gradient-based reward optimization approach that incorporates the offline rewards of multiple responses into a streamlined listwise framework.
LIRE is straightforward to implement, requiring minimal parameter tuning, and seamlessly aligns with the pairwise paradigm.
Our experiments demonstrate that LIRE consistently outperforms existing methods across several benchmarks on dialogue and summarization tasks.
arXiv Detail & Related papers (2024-05-22T10:21:50Z) - A Unified Linear Programming Framework for Offline Reward Learning from Human Demonstrations and Feedback [6.578074497549894]
Inverse Reinforcement Learning (IRL) and Reinforcement Learning from Human Feedback (RLHF) are pivotal methodologies in reward learning.
This paper introduces a novel linear programming (LP) framework tailored for offline reward learning.
arXiv Detail & Related papers (2024-05-20T23:59:26Z) - Learning Goal-Conditioned Policies from Sub-Optimal Offline Data via Metric Learning [22.174803826742963]
We address the problem of learning optimal behavior from sub-optimal datasets for goal-conditioned offline reinforcement learning.
We propose the use of metric learning to approximate the optimal value function for goal-conditioned offline RL problems.
We show that our method estimates optimal behaviors from severely sub-optimal offline datasets without suffering from out-of-distribution estimation errors.
arXiv Detail & Related papers (2024-02-16T16:46:53Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
This paper shows how efficiently-solvable fair ranking models can be integrated into the training loop of Learning to Rank.
In particular, this paper is the first to show how to backpropagate through constrained optimizations of OWA objectives, enabling their use in integrated prediction and decision models.
arXiv Detail & Related papers (2024-02-07T20:53:53Z) - APS: Active Pretraining with Successor Features [96.24533716878055]
We show that by reinterpreting and combining successorcitepHansenFast with non entropy, the intractable mutual information can be efficiently optimized.
The proposed method Active Pretraining with Successor Feature (APS) explores the environment via non entropy, and the explored data can be efficiently leveraged to learn behavior.
arXiv Detail & Related papers (2021-08-31T16:30:35Z) - Improving Long-Term Metrics in Recommendation Systems using
Short-Horizon Offline RL [56.20835219296896]
We study session-based recommendation scenarios where we want to recommend items to users during sequential interactions to improve their long-term utility.
We develop a new batch RL algorithm called Short Horizon Policy Improvement (SHPI) that approximates policy-induced distribution shifts across sessions.
arXiv Detail & Related papers (2021-06-01T15:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.