論文の概要: Virus: Harmful Fine-tuning Attack for Large Language Models Bypassing Guardrail Moderation
- arxiv url: http://arxiv.org/abs/2501.17433v1
- Date: Wed, 29 Jan 2025 06:24:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:55:15.904162
- Title: Virus: Harmful Fine-tuning Attack for Large Language Models Bypassing Guardrail Moderation
- Title(参考訳): ウイルス:ガードレールモデレーションをバイパスする大規模言語モデルに対する有害な微調整攻撃
- Authors: Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, Ling Liu,
- Abstract要約: データフィルタリングにおいて、純粋にモデレーションガードレールに頼ることは信頼性がないことを示す。
提案手法はウイルスと呼ばれ,有害なデータをわずかに修正することで容易にガードレールのモデレーションを回避できる。
実験の結果,ウイルスに最適化された有害データは,最大100%の漏出比でガードレールで検出できないことがわかった。
- 参考スコア(独自算出の注目度): 7.945893812374361
- License:
- Abstract: Recent research shows that Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks -- models lose their safety alignment ability after fine-tuning on a few harmful samples. For risk mitigation, a guardrail is typically used to filter out harmful samples before fine-tuning. By designing a new red-teaming method, we in this paper show that purely relying on the moderation guardrail for data filtration is not reliable. Our proposed attack method, dubbed Virus, easily bypasses the guardrail moderation by slightly modifying the harmful data. Experimental results show that the harmful data optimized by Virus is not detectable by the guardrail with up to 100\% leakage ratio, and can simultaneously achieve superior attack performance. Finally, the key message we want to convey through this paper is that: \textbf{it is reckless to consider guardrail moderation as a clutch at straws towards harmful fine-tuning attack}, as it cannot solve the inherent safety issue of the pre-trained LLMs. Our code is available at https://github.com/git-disl/Virus
- Abstract(参考訳): 最近の研究では、Large Language Models(LLM)は有害な微調整攻撃に弱いことが示されています。
リスク軽減のため、ガードレールは通常、微調整の前に有害なサンプルをろ過するために使用される。
そこで本論文では,データフィルタリングのためのモデレーションガードレールを純粋に頼っているだけでは信頼性が低いことを示す。
提案手法はウイルスと呼ばれ,有害なデータをわずかに修正することで容易にガードレールのモデレーションを回避できる。
実験の結果, ウイルスに最適化された有害データは, 最大100倍の漏れ率を有するガードレールでは検出できず, 同時に優れた攻撃性能が得られることがわかった。
最後に、我々がこの論文を通じて伝えたい重要なメッセージは次のとおりである: 事前訓練されたLLMの固有の安全性の問題は解決できないため、ガードレールのモデレーションは、ストローのクラッチとして有害な微調整攻撃に向けてのクラッチであると考えるのは無謀である。
私たちのコードはhttps://github.com/git-disl/Virusで利用可能です。
関連論文リスト
- The Victim and The Beneficiary: Exploiting a Poisoned Model to Train a Clean Model on Poisoned Data [4.9676716806872125]
バックドア攻撃は、ディープニューラルネットワーク(DNN)のトレーニングプロセスに深刻なセキュリティ上の脅威をもたらしている
The Victim and The Beneficiary (V&B) は有毒なモデルを利用して、余分な良性サンプルを使わずにクリーンなモデルを訓練する。
本フレームワークは,良質な試料の性能を維持しつつ,バックドア注入の防止と各種攻撃に対する堅牢化に有効である。
論文 参考訳(メタデータ) (2024-04-17T11:15:58Z) - Vaccine: Perturbation-aware Alignment for Large Language Models against Harmful Fine-tuning Attack [7.653580388741887]
ユーザがアップロードした有害なデータのいくつかは、微調整を簡単に騙してアライメントが壊れたモデルを生成することができる。
本稿では,ユーザが微調整を行う際のセキュリティリスクを軽減するために,摂動を考慮したアライメント手法であるVaccineを提案する。
論文 参考訳(メタデータ) (2024-02-02T02:56:50Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対して脆弱である。
既存のジェイルブレイク法は計算コストがかかる。
我々は、弱々しく強固な脱獄攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-30T18:48:37Z) - Protecting Model Adaptation from Trojans in the Unlabeled Data [120.42853706967188]
本稿では,よく設計された毒物標的データによるモデル適応に対するトロイの木馬攻撃の可能性について検討する。
本稿では,既存の適応アルゴリズムとシームレスに統合可能なDiffAdaptというプラグイン・アンド・プレイ手法を提案する。
論文 参考訳(メタデータ) (2024-01-11T16:42:10Z) - Does Few-shot Learning Suffer from Backdoor Attacks? [63.9864247424967]
数発の学習がバックドアアタックに対して脆弱であることは明らかです。
本手法は,FSLタスクにおける攻撃成功率(ASR)を,異なる数発の学習パラダイムで示す。
この研究は、数発の学習がまだバックドア攻撃に悩まされており、そのセキュリティに注意を払う必要があることを明らかにしている。
論文 参考訳(メタデータ) (2023-12-31T06:43:36Z) - Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models [102.63973600144308]
オープンソースの大規模言語モデルは、有害なコンテンツを生成するために容易に変換できる。
5つの異なる組織がリリースした8つのモデルに対する実験は、シャドーアライメントアタックの有効性を実証している。
この研究は、悪意のある攻撃者に対するオープンソースのLLMの安全性を見直し、強化するための集団的な取り組みの発端となる。
論文 参考訳(メタデータ) (2023-10-04T16:39:31Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - TrojanPuzzle: Covertly Poisoning Code-Suggestion Models [27.418320728203387]
ドクストリングなどの文脈外領域に悪意のある毒データを植え付けることで静的解析を回避できる2つの攻撃を示す。
我々の最も新しい攻撃であるTROJANPUZLEは、ペイロードの特定の部分(目立たしい)を毒データに明示的に含めないことによって、不審な毒データを生成するための一歩を踏み出した。
論文 参考訳(メタデータ) (2023-01-06T00:37:25Z) - Be Careful about Poisoned Word Embeddings: Exploring the Vulnerability
of the Embedding Layers in NLP Models [27.100909068228813]
最近の研究では、バックドア攻撃と呼ばれる自然言語処理(NLP)モデルに対するセキュリティの脅威が明らかになった。
本稿では,1つの単語埋め込みベクトルを変更することで,データフリーな方法でモデルをハックできることを見出した。
感情分析および文対分類タスクの実験結果から,本手法はより効率的でステルス性が高いことが示された。
論文 参考訳(メタデータ) (2021-03-29T12:19:45Z) - Weight Poisoning Attacks on Pre-trained Models [103.19413805873585]
本研究は, バックドアを微調整した後に, バックドアを露出する脆弱性を伴って, 事前訓練した重量を注入した場合に, 重量中毒を発生させることが可能であることを示す。
感情分類,毒性検出,スパム検出に関する実験により,この攻撃は広く適用可能であり,深刻な脅威となることが示された。
論文 参考訳(メタデータ) (2020-04-14T16:51:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。