A Constraint-Preserving Neural Network Approach for Solving Mean-Field Games Equilibrium
- URL: http://arxiv.org/abs/2501.17450v2
- Date: Mon, 10 Mar 2025 14:42:09 GMT
- Title: A Constraint-Preserving Neural Network Approach for Solving Mean-Field Games Equilibrium
- Authors: Jinwei Liu, Lu Ren, Wang Yao, Xiao Zhang,
- Abstract summary: Neural network-based methods have demonstrated effectiveness in solving high-dimensional Mean-Field Games (MFG) equilibria.<n>This paper proposes the NF-MKV Net, a network approach that integrates neural networks to solve FBSDEs and their associated fixed-point formulations of MFG equilibria.
- Score: 6.168001746423872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural network-based methods have demonstrated effectiveness in solving high-dimensional Mean-Field Games (MFG) equilibria, yet ensuring mathematically consistent density-coupled evolution remains a major challenge. This paper proposes the NF-MKV Net, a neural network approach that integrates process-regularized normalizing flow (NF) with state-policy-connected time-series neural networks to solve MKV FBSDEs and their associated fixed-point formulations of MFG equilibria. The method first reformulates MFG equilibria as MKV FBSDEs, embedding density evolution into equation coefficients within a probabilistic framework. Neural networks are then employed to approximate value functions and their gradients. To enforce volumetric invariance and temporal continuity, NF architectures impose loss constraints on each density transfer function.
Related papers
- Mask-PINNs: Regulating Feature Distributions in Physics-Informed Neural Networks [1.6984490081106065]
Mask-PINNs regulates internal feature distributions through a smooth, learnable mask function applied pointwise across hidden layers.<n>We show consistent improvements in prediction accuracy, convergence stability, and robustness, with relative L2 errors reduced by up to two orders of magnitude over baseline models.
arXiv Detail & Related papers (2025-05-09T15:38:52Z) - PIONM: A Generalized Approach to Solving Density-Constrained Mean-Field Games Equilibrium under Modified Boundary Conditions [6.738098801743817]
Neural network-based methods are effective for solving equilibria in Mean-Field Games (MFGs)
We propose a generalized framework, PIONM, which leverages physics-informed neural operators to solve MFGs equations.
PIONM efficiently computes equilibria under varying boundary conditions, including obstacles, diffusion coefficients, initial densities, and terminal functions.
arXiv Detail & Related papers (2025-04-04T06:46:09Z) - Efficient and Scalable Deep Reinforcement Learning for Mean Field Control Games [16.62770187749295]
Mean Field Control Games (MFCGs) provide a powerful theoretical framework for analyzing systems of infinitely many interacting agents.<n>This paper presents a scalable deep Reinforcement Learning (RL) approach to approximate equilibrium solutions of MFCGs.
arXiv Detail & Related papers (2024-12-28T02:04:53Z) - Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
The neutron diffusion equation plays a pivotal role in the analysis of nuclear reactors.
Traditional PINN approaches often utilize fully connected network (FCN) architecture.
R2-PINN effectively overcomes the limitations inherent in current methods, providing more accurate and robust solutions for neutron diffusion equations.
arXiv Detail & Related papers (2024-06-23T13:49:31Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Neural-Integrated Meshfree (NIM) Method: A differentiable
programming-based hybrid solver for computational mechanics [1.7132914341329852]
We present the neural-integrated meshfree (NIM) method, a differentiable programming-based hybrid meshfree approach within the field of computational mechanics.
NIM seamlessly integrates traditional physics-based meshfree discretization techniques with deep learning architectures.
Under the NIM framework, we propose two truly meshfree solvers: the strong form-based NIM (S-NIM) and the local variational form-based NIM (V-NIM)
arXiv Detail & Related papers (2023-11-21T17:57:12Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - Convergence of mean-field Langevin dynamics: Time and space
discretization, stochastic gradient, and variance reduction [49.66486092259376]
The mean-field Langevin dynamics (MFLD) is a nonlinear generalization of the Langevin dynamics that incorporates a distribution-dependent drift.
Recent works have shown that MFLD globally minimizes an entropy-regularized convex functional in the space of measures.
We provide a framework to prove a uniform-in-time propagation of chaos for MFLD that takes into account the errors due to finite-particle approximation, time-discretization, and gradient approximation.
arXiv Detail & Related papers (2023-06-12T16:28:11Z) - High Accuracy Uncertainty-Aware Interatomic Force Modeling with
Equivariant Bayesian Neural Networks [3.028098724882708]
We introduce a new Monte Carlo Markov chain sampling algorithm for learning interatomic forces.
In addition, we introduce a new neural network model based on the NequIP architecture and demonstrate that, when combined with our novel sampling algorithm, we obtain predictions with state-of-the-art accuracy as well as a good measure of uncertainty.
arXiv Detail & Related papers (2023-04-05T10:39:38Z) - A Functional-Space Mean-Field Theory of Partially-Trained Three-Layer
Neural Networks [49.870593940818715]
We study the infinite-width limit of a type of three-layer NN model whose first layer is random and fixed.
Our theory accommodates different scaling choices of the model, resulting in two regimes of the MF limit that demonstrate distinctive behaviors.
arXiv Detail & Related papers (2022-10-28T17:26:27Z) - SymNMF-Net for The Symmetric NMF Problem [62.44067422984995]
We propose a neural network called SymNMF-Net for the Symmetric NMF problem.
We show that the inference of each block corresponds to a single iteration of the optimization.
Empirical results on real-world datasets demonstrate the superiority of our SymNMF-Net.
arXiv Detail & Related papers (2022-05-26T08:17:39Z) - A control method for solving high-dimensional Hamiltonian systems
through deep neural networks [0.2752817022620644]
We first introduce a corresponding optimal control problem such that the Hamiltonian system of control problem is exactly what we need to solve, then develop two different algorithms suitable for different cases of the control problem and approximate the control via deep neural networks.
From the numerical results, comparing with the Deep FBSDE method which was developed previously from the view of solving FBSDEs, the novel algorithms converge faster, which means that they require fewer training steps, and demonstrate more stable convergences for different Hamiltonian systems.
arXiv Detail & Related papers (2021-11-04T05:22:08Z) - Limiting fluctuation and trajectorial stability of multilayer neural
networks with mean field training [3.553493344868413]
We study the fluctuation in the case of multilayer networks at any network depth.
We demonstrate through the framework the complex interaction among neurons in this second-order MF limit.
A limit theorem is proven to relate this limit to the fluctuation of large-width networks.
arXiv Detail & Related papers (2021-10-29T17:58:09Z) - Stability Analysis of Unfolded WMMSE for Power Allocation [80.71751088398209]
Power allocation is one of the fundamental problems in wireless networks.
It is essential that the output power allocation of these algorithms is stable with respect to input perturbations.
In this paper, we focus on UWMMSE, a modern algorithm leveraging graph neural networks.
arXiv Detail & Related papers (2021-10-14T15:44:19Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
Conditional normalizing flows (CNFs) are efficient in sampling and inference.
We present a study of CNFs where the base density to output space mapping is conditioned on an input x, to model conditional densities p(y|x)
arXiv Detail & Related papers (2019-11-29T19:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.