Neural Spelling: A Spell-Based BCI System for Language Neural Decoding
- URL: http://arxiv.org/abs/2501.17489v1
- Date: Wed, 29 Jan 2025 08:57:51 GMT
- Title: Neural Spelling: A Spell-Based BCI System for Language Neural Decoding
- Authors: Xiaowei Jiang, Charles Zhou, Yiqun Duan, Ziyi Zhao, Thomas Do, Chin-Teng Lin,
- Abstract summary: We propose a novel non-invasive EEG-based BCI system with Curriculum-based Neural Spelling Framework.
It recognizes all 26 alphabet letters by decoding neural signals associated with handwriting first, and then apply a Generative AI (GenAI) to enhance spell-based neural language decoding tasks.
- Score: 25.721498096893427
- License:
- Abstract: Brain-computer interfaces (BCIs) present a promising avenue by translating neural activity directly into text, eliminating the need for physical actions. However, existing non-invasive BCI systems have not successfully covered the entire alphabet, limiting their practicality. In this paper, we propose a novel non-invasive EEG-based BCI system with Curriculum-based Neural Spelling Framework, which recognizes all 26 alphabet letters by decoding neural signals associated with handwriting first, and then apply a Generative AI (GenAI) to enhance spell-based neural language decoding tasks. Our approach combines the ease of handwriting with the accessibility of EEG technology, utilizing advanced neural decoding algorithms and pre-trained large language models (LLMs) to translate EEG patterns into text with high accuracy. This system show how GenAI can improve the performance of typical spelling-based neural language decoding task, and addresses the limitations of previous methods, offering a scalable and user-friendly solution for individuals with communication impairments, thereby enhancing inclusive communication options.
Related papers
- BrainECHO: Semantic Brain Signal Decoding through Vector-Quantized Spectrogram Reconstruction for Whisper-Enhanced Text Generation [29.78480739360263]
We propose a new multi-stage strategy for semantic brain signal decoding via vEctor-quantized speCtrogram reconstruction.
BrainECHO successively conducts: 1) autoencoding of the audio spectrogram; 2) Brain-audio latent space alignment; and 3) Semantic text generation via Whisper finetuning.
BrainECHO outperforms state-of-the-art methods under the same data split settings on two widely accepted resources.
arXiv Detail & Related papers (2024-10-19T04:29:03Z) - Towards Linguistic Neural Representation Learning and Sentence Retrieval from Electroencephalogram Recordings [27.418738450536047]
We propose a two-step pipeline for converting EEG signals into sentences.
We first confirm that word-level semantic information can be learned from EEG data recorded during natural reading.
We employ a training-free retrieval method to retrieve sentences based on the predictions from the EEG encoder.
arXiv Detail & Related papers (2024-08-08T03:40:25Z) - Enhancing EEG-to-Text Decoding through Transferable Representations from Pre-trained Contrastive EEG-Text Masked Autoencoder [69.7813498468116]
We propose Contrastive EEG-Text Masked Autoencoder (CET-MAE), a novel model that orchestrates compound self-supervised learning across and within EEG and text.
We also develop a framework called E2T-PTR (EEG-to-Text decoding using Pretrained Transferable Representations) to decode text from EEG sequences.
arXiv Detail & Related papers (2024-02-27T11:45:21Z) - Language Generation from Brain Recordings [68.97414452707103]
We propose a generative language BCI that utilizes the capacity of a large language model and a semantic brain decoder.
The proposed model can generate coherent language sequences aligned with the semantic content of visual or auditory language stimuli.
Our findings demonstrate the potential and feasibility of employing BCIs in direct language generation.
arXiv Detail & Related papers (2023-11-16T13:37:21Z) - Language-Oriented Communication with Semantic Coding and Knowledge
Distillation for Text-to-Image Generation [53.97155730116369]
We put forward a novel framework of language-oriented semantic communication (LSC)
In LSC, machines communicate using human language messages that can be interpreted and manipulated via natural language processing (NLP) techniques for SC efficiency.
We introduce three innovative algorithms: 1) semantic source coding (SSC), which compresses a text prompt into its key head words capturing the prompt's syntactic essence; 2) semantic channel coding ( SCC), that improves robustness against errors by substituting head words with their lenghthier synonyms; and 3) semantic knowledge distillation (SKD), that produces listener-customized prompts via in-context learning the listener's
arXiv Detail & Related papers (2023-09-20T08:19:05Z) - Sequential Best-Arm Identification with Application to Brain-Computer
Interface [34.87975833920409]
A brain-computer interface (BCI) is a technology that enables direct communication between the brain and an external device or computer system.
An electroencephalogram (EEG) and event-related potential (ERP)-based speller system is a type of BCI that allows users to spell words without using a physical keyboard.
We propose a sequential top-two Thompson sampling (STTS) algorithm under the fixed-confidence setting and the fixed-budget setting.
arXiv Detail & Related papers (2023-05-17T18:49:44Z) - NeuroLogic A*esque Decoding: Constrained Text Generation with Lookahead
Heuristics [73.96837492216204]
We propose NeuroLogic A*esque, a decoding algorithm that incorporates estimates of future cost.
We develop efficient lookaheads that are efficient for large-scale language models.
Our approach achieves competitive baselines on five generation tasks, and new state-of-the-art performance on table-to-text generation, constrained machine translation, and keyword-constrained generation.
arXiv Detail & Related papers (2021-12-16T09:22:54Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
State-of-the-art brain-to-text systems have achieved great success in decoding language directly from brain signals using neural networks.
In this paper, we extend the problem to open vocabulary Electroencephalography(EEG)-To-Text Sequence-To-Sequence decoding and zero-shot sentence sentiment classification on natural reading tasks.
Our model achieves a 40.1% BLEU-1 score on EEG-To-Text decoding and a 55.6% F1 score on zero-shot EEG-based ternary sentiment classification, which significantly outperforms supervised baselines.
arXiv Detail & Related papers (2021-12-05T21:57:22Z) - Lexically Aware Semi-Supervised Learning for OCR Post-Correction [90.54336622024299]
Much of the existing linguistic data in many languages of the world is locked away in non-digitized books and documents.
Previous work has demonstrated the utility of neural post-correction methods on recognition of less-well-resourced languages.
We present a semi-supervised learning method that makes it possible to utilize raw images to improve performance.
arXiv Detail & Related papers (2021-11-04T04:39:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.