Critique Fine-Tuning: Learning to Critique is More Effective than Learning to Imitate
- URL: http://arxiv.org/abs/2501.17703v3
- Date: Wed, 05 Feb 2025 11:53:10 GMT
- Title: Critique Fine-Tuning: Learning to Critique is More Effective than Learning to Imitate
- Authors: Yubo Wang, Xiang Yue, Wenhu Chen,
- Abstract summary: Supervised Fine-Tuning (SFT) is commonly used to train language models to imitate annotated responses for given instructions.
Inspired by human learning processes that emphasize critical thinking, we propose Critique Fine-Tuning (CFT)
CFT encourages deeper analysis and nuanced understanding-traits often overlooked by standard SFT.
- Score: 41.58282051139543
- License:
- Abstract: Supervised Fine-Tuning (SFT) is commonly used to train language models to imitate annotated responses for given instructions. In this paper, we challenge this paradigm and propose Critique Fine-Tuning (CFT), a strategy where models learn to critique noisy responses rather than simply imitate correct ones. Inspired by human learning processes that emphasize critical thinking, CFT encourages deeper analysis and nuanced understanding-traits often overlooked by standard SFT. To validate the effectiveness of CFT, we construct a 50K-sample dataset from WebInstruct, using GPT-4o as the teacher to generate critiques in the form of ([query; noisy response], critique). CFT on this dataset yields a consistent 4-10% improvement over SFT on six math benchmarks with different base models like Qwen2.5, Qwen2.5-Math and DeepSeek-Math. We further expand to MetaMath and NuminaMath datasets and observe similar gains over SFT. Notably, our model Qwen2.5-Math-CFT only requires 1 hour training on 8xH100 over the 50K examples. It can match or outperform strong competitors like Qwen2.5-Math-Instruct on most benchmarks, which use over 2M samples. Moreover, it can match the performance of SimpleRL, which is a deepseek-r1 replication trained with 140x more compute. Ablation studies show that CFT is robust to the source of noisy response and teacher critique model. Through these findings, we argue that CFT offers a more effective alternative to advance the reasoning of language models.
Related papers
- LLMs Can Easily Learn to Reason from Demonstrations Structure, not content, is what matters! [53.84130385074551]
Large reasoning models (LRMs) tackle complex reasoning problems by following long chain-of-thoughts (Long CoT)
We find that a Large Language model (LLM) can effectively learn Long CoT reasoning through data-efficient supervised fine-tuning (SFT) and parameter-efficient low-rank adaptation (LoRA)
With just 17k long CoT training samples, the Qwen2.5-32B-Instruct model achieves significant improvements on a wide range of math and coding benchmarks.
arXiv Detail & Related papers (2025-02-11T08:48:48Z) - Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling [52.34735382627312]
Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.
Existing approaches mainly rely on imitation learning and struggle to achieve effective test-time scaling.
We present T1 to scale reinforcement learning by encouraging exploration and understand inference scaling.
arXiv Detail & Related papers (2025-01-20T18:33:33Z) - Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
We propose a two-player paradigm that separates the roles of reasoning and critique models.
We first propose AutoMathCritique, an automated and scalable framework for collecting critique data.
We demonstrate that the critique models consistently improve the actor's performance on difficult queries at test-time.
arXiv Detail & Related papers (2024-11-25T17:11:54Z) - OpenMathInstruct-2: Accelerating AI for Math with Massive Open-Source Instruction Data [8.36384597713879]
The OpenMathInstruct-2 dataset consists of 14M question-solution pairs ($approx$ 600K unique questions)
Finetuning the textttLlama-3.1-8B-Base using OpenMathInstruct-2 outperforms textttLlama3.1-8B-Instruct on MATH by an absolute 15.9%.
To accelerate the open-source efforts, we release the code, the finetuned models, and the OpenMathInstruct-2 dataset under a commercially permissive license.
arXiv Detail & Related papers (2024-10-02T14:00:09Z) - Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement [71.46993852662021]
We present a series of math-specific large language models: Qwen2.5-Math and Qwen2.5-Math-Instruct-1.5B/7B/72B.
Qwen2.5-Math-Instruct supports both Chinese and English, and possess advanced mathematical reasoning capabilities.
arXiv Detail & Related papers (2024-09-18T16:45:37Z) - Skywork-Math: Data Scaling Laws for Mathematical Reasoning in Large Language Models -- The Story Goes On [55.449818944278526]
We introduce the Skywork-Math model series, supervised fine-tuned (SFT) on common 7B language models.
Skywork-Math 7B has achieved impressive accuracies of 51.2% on the competition-level MATH benchmark.
We provide several practical takeaways to enhance math reasoning abilities in LLMs for both research and industry applications.
arXiv Detail & Related papers (2024-07-11T09:56:51Z) - ReFT: Reasoning with Reinforced Fine-Tuning [9.80361828538909]
We propose a simple yet effective approach called Reinforced Fine-Tuning (ReFT) to enhance the generalizability of learning LLMs for reasoning.
ReFT first warmups the model with SFT, and then employs on-line reinforcement learning, specifically the PPO algorithm in this paper.
Experiments on GSM8K, MathQA, and SVAMP datasets show that ReFT significantly outperforms SFT.
arXiv Detail & Related papers (2024-01-17T04:43:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.