Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling
- URL: http://arxiv.org/abs/2501.11651v1
- Date: Mon, 20 Jan 2025 18:33:33 GMT
- Title: Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling
- Authors: Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang Li, Zijun Yao, Juanzi Li, Jie Tang, Yuxiao Dong,
- Abstract summary: Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.
Existing approaches mainly rely on imitation learning and struggle to achieve effective test-time scaling.
We present T1 to scale reinforcement learning by encouraging exploration and understand inference scaling.
- Score: 52.34735382627312
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks. However, existing approaches mainly rely on imitation learning and struggle to achieve effective test-time scaling. While reinforcement learning (RL) holds promise for enabling self-exploration and learning from feedback, recent attempts yield only modest improvements in complex reasoning. In this paper, we present T1 to scale RL by encouraging exploration and understand inference scaling. We first initialize the LLM using synthesized chain-of-thought data that integrates trial-and-error and self-verification. To scale RL training, we promote increased sampling diversity through oversampling. We further employ an entropy bonus as an auxiliary loss, alongside a dynamic anchor for regularization to facilitate reward optimization. We demonstrate that T1 with open LLMs as its base exhibits inference scaling behavior and achieves superior performance on challenging math reasoning benchmarks. For example, T1 with Qwen2.5-32B as the base model outperforms the recent Qwen QwQ-32B-Preview model on MATH500, AIME2024, and Omni-math-500. More importantly, we present a simple strategy to examine inference scaling, where increased inference budgets directly lead to T1's better performance without any additional verification. We will open-source the T1 models and the data used to train them at \url{https://github.com/THUDM/T1}.
Related papers
- LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
Training Large Language Models (LLMs) from scratch requires immense computational resources, making it prohibitively expensive.
Model scaling-up offers a promising solution by leveraging the parameters of smaller models to create larger ones.
We propose textbfLESA, a novel learnable method for depth scaling-up.
arXiv Detail & Related papers (2025-02-19T14:58:48Z) - S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
We introduce S$2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference.
Our results demonstrate that Qwen2.5-math-7B achieves an accuracy improvement from 51.0% to 81.6%, outperforming models trained on an equivalent amount of long-CoT distilled data.
arXiv Detail & Related papers (2025-02-18T13:40:22Z) - On the Emergence of Thinking in LLMs I: Searching for the Right Intuition [34.32871896067864]
We propose a post-training framework called Reinforcement Learning via Self-Play (RLSP)
RLSP involves three steps: supervised fine-tuning with human or synthetic demonstrations of the reasoning process, using an exploration reward signal to encourage diverse and efficient reasoning behaviors, and RL training with an outcome verifier to ensure correctness while preventing reward hacking.
Empirical studies in the math domain show that RLSP improves reasoning.
arXiv Detail & Related papers (2025-02-10T18:52:04Z) - Unlock the Correlation between Supervised Fine-Tuning and Reinforcement Learning in Training Code Large Language Models [12.656574142412484]
We make an attempt to understand the correlation between supervised fine-tuning and reinforcement learning.
We find that both atomic and synthetic functions are indispensable for SFT's generalization.
arXiv Detail & Related papers (2024-06-14T03:39:01Z) - Teaching Large Language Models to Reason with Reinforcement Learning [38.17625148525193]
Reinforcement Learning from Human Feedback (textbfRLHF) has emerged as a dominant approach for aligning LLM outputs with human preferences.
Inspired by the success of RLHF, we study the performance of multiple algorithms that learn from feedback.
arXiv Detail & Related papers (2024-03-07T16:36:29Z) - An Emulator for Fine-Tuning Large Language Models using Small Language
Models [91.02498576056057]
We introduce emulated fine-tuning (EFT), a principled and practical method for sampling from a distribution that approximates the result of pre-training and fine-tuning at different scales.
We show that EFT enables test-time adjustment of competing behavioral traits like helpfulness and harmlessness without additional training.
Finally, a special case of emulated fine-tuning, which we call LM up-scaling, avoids resource-intensive fine-tuning of large pre-trained models by ensembling them with small fine-tuned models.
arXiv Detail & Related papers (2023-10-19T17:57:16Z) - Inverse Scaling: When Bigger Isn't Better [80.42834197416444]
Large language models (LMs) show predictable improvements to overall loss with increased scale.
We present evidence for the claim that LMs may show inverse scaling, or worse task performance with increased scale.
arXiv Detail & Related papers (2023-06-15T20:11:23Z) - Unifying Language Learning Paradigms [96.35981503087567]
We present a unified framework for pre-training models that are universally effective across datasets and setups.
We show how different pre-training objectives can be cast as one another and how interpolating between different objectives can be effective.
Our model also achieve strong results at in-context learning, outperforming 175B GPT-3 on zero-shot SuperGLUE and tripling the performance of T5-XXL on one-shot summarization.
arXiv Detail & Related papers (2022-05-10T19:32:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.