WARP: An Efficient Engine for Multi-Vector Retrieval
- URL: http://arxiv.org/abs/2501.17788v2
- Date: Wed, 30 Apr 2025 08:28:56 GMT
- Title: WARP: An Efficient Engine for Multi-Vector Retrieval
- Authors: Jan Luca Scheerer, Matei Zaharia, Christopher Potts, Gustavo Alonso, Omar Khattab,
- Abstract summary: WARP is a retrieval engine that substantially improves the efficiency of retrievers trained with the XTR objective.<n>Our system reduces end-to-end latency compared to XTR's reference implementation by 41x, and achieves a 3x speedup over the ColBERTv2/PLAID engine.
- Score: 42.128201454569165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-vector retrieval methods such as ColBERT and its recent variant, the ConteXtualized Token Retriever (XTR), offer high accuracy but face efficiency challenges at scale. To address this, we present WARP, a retrieval engine that substantially improves the efficiency of retrievers trained with the XTR objective through three key innovations: (1) WARP$_\text{SELECT}$ for dynamic similarity imputation; (2) implicit decompression, avoiding costly vector reconstruction during retrieval; and (3) a two-stage reduction process for efficient score aggregation. Combined with highly-optimized C++ kernels, our system reduces end-to-end latency compared to XTR's reference implementation by 41x, and achieves a 3x speedup over the ColBERTv2/PLAID engine, while preserving retrieval quality.
Related papers
- Exploring Diffusion with Test-Time Training on Efficient Image Restoration [1.3830502387127932]
DiffRWKVIR is a novel framework unifying Test-Time Training (TTT) with efficient diffusion.<n>Our method establishes a new paradigm for adaptive, high-efficiency image restoration with optimized hardware utilization.
arXiv Detail & Related papers (2025-06-17T14:01:59Z) - MUVERA: Multi-Vector Retrieval via Fixed Dimensional Encodings [15.275864151890511]
We introduce MUVERA (MUlti-VEctor Retrieval Algorithm), a retrieval mechanism which reduces multi-vector search to single-vector similarity search.
MUVERA achieves consistently good end-to-end recall and latency across a diverse set of the BEIR retrieval datasets.
arXiv Detail & Related papers (2024-05-29T20:40:20Z) - Constructing Tree-based Index for Efficient and Effective Dense
Retrieval [26.706985694158384]
JTR stands for Joint optimization of TRee-based index and query encoding.
We design a new unified contrastive learning loss to train tree-based index and query encoder in an end-to-end manner.
Experimental results show that JTR achieves better retrieval performance while retaining high system efficiency.
arXiv Detail & Related papers (2023-04-24T09:25:39Z) - CITADEL: Conditional Token Interaction via Dynamic Lexical Routing for
Efficient and Effective Multi-Vector Retrieval [72.90850213615427]
Multi-vector retrieval methods combine the merits of sparse (e.g. BM25) and dense (e.g. DPR) retrievers.
These methods are orders of magnitude slower and need much more space to store their indices compared to their single-vector counterparts.
We propose conditional token interaction via dynamic lexical routing, namely CITADEL, for efficient and effective multi-vector retrieval.
arXiv Detail & Related papers (2022-11-18T18:27:35Z) - Hyperbolic Cosine Transformer for LiDAR 3D Object Detection [6.2216654973540795]
We propose a two-stage hyperbolic cosine transformer (ChTR3D) for 3D object detection from LiDAR point clouds.
The proposed ChTR3D refines proposals by applying cosh-attention in linear complexity to encode rich contextual relationships among points.
Experiments on the widely used KITTI dataset demonstrate that, compared with vanilla attention, the cosh-attention significantly improves the inference speed with competitive performance.
arXiv Detail & Related papers (2022-11-10T13:54:49Z) - Pair DETR: Contrastive Learning Speeds Up DETR Training [0.6491645162078056]
We present a simple approach to address the main problem of DETR, the slow convergence.
We detect an object bounding box as a pair of keypoints, the top-left corner and the center, using two decoders.
Experiments show that Pair DETR can converge at least 10x faster than original DETR and 1.5x faster than Conditional DETR during training.
arXiv Detail & Related papers (2022-10-29T03:02:49Z) - Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix
Factorization [60.91600465922932]
We present an approach that avoids the use of a dual-encoder for retrieval, relying solely on the cross-encoder.
Our approach provides test-time recall-vs-computational cost trade-offs superior to the current widely-used methods.
arXiv Detail & Related papers (2022-10-23T00:32:04Z) - A Fast Post-Training Pruning Framework for Transformers [74.59556951906468]
Pruning is an effective way to reduce the huge inference cost of large Transformer models.
Prior work on model pruning requires retraining the model.
We propose a fast post-training pruning framework for Transformers that does not require any retraining.
arXiv Detail & Related papers (2022-03-29T07:41:11Z) - Sparse DETR: Efficient End-to-End Object Detection with Learnable
Sparsity [10.098578160958946]
We show that Sparse DETR achieves better performance than Deformable DETR even with only 10% encoder tokens on the COCO dataset.
Albeit only the encoder tokens are sparsified, the total computation cost decreases by 38% and the frames per second (FPS) increases by 42% compared to Deformable DETR.
arXiv Detail & Related papers (2021-11-29T05:22:46Z) - CATRO: Channel Pruning via Class-Aware Trace Ratio Optimization [61.71504948770445]
We propose a novel channel pruning method via Class-Aware Trace Ratio Optimization (CATRO) to reduce the computational burden and accelerate the model inference.
We show that CATRO achieves higher accuracy with similar cost or lower cost with similar accuracy than other state-of-the-art channel pruning algorithms.
Because of its class-aware property, CATRO is suitable to prune efficient networks adaptively for various classification subtasks, enhancing handy deployment and usage of deep networks in real-world applications.
arXiv Detail & Related papers (2021-10-21T06:26:31Z) - HANT: Hardware-Aware Network Transformation [82.54824188745887]
We propose hardware-aware network transformation (HANT)
HANT replaces inefficient operations with more efficient alternatives using a neural architecture search like approach.
Our results on accelerating the EfficientNet family show that HANT can accelerate them by up to 3.6x with 0.4% drop in the top-1 accuracy on the ImageNet dataset.
arXiv Detail & Related papers (2021-07-12T18:46:34Z) - Trilevel Neural Architecture Search for Efficient Single Image
Super-Resolution [127.92235484598811]
This paper proposes a trilevel neural architecture search (NAS) method for efficient single image super-resolution (SR)
For modeling the discrete search space, we apply a new continuous relaxation on the discrete search spaces to build a hierarchical mixture of network-path, cell-operations, and kernel-width.
An efficient search algorithm is proposed to perform optimization in a hierarchical supernet manner.
arXiv Detail & Related papers (2021-01-17T12:19:49Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.