P-TAME: Explain Any Image Classifier with Trained Perturbations
- URL: http://arxiv.org/abs/2501.17813v1
- Date: Wed, 29 Jan 2025 18:06:08 GMT
- Title: P-TAME: Explain Any Image Classifier with Trained Perturbations
- Authors: Mariano V. Ntrougkas, Vasileios Mezaris, Ioannis Patras,
- Abstract summary: P-TAME (Perturbation-based Trainable Attention Mechanism for Explanations) is a model-agnostic method for explaining Deep Neural Networks (DNNs)
It generates high-resolution explanations in a single forward pass during inference.
We apply P-TAME to explain the decisions of VGG-16, ResNet-50, and ViT-B-16, three distinct and widely used image classifiers.
- Score: 14.31574090533474
- License:
- Abstract: The adoption of Deep Neural Networks (DNNs) in critical fields where predictions need to be accompanied by justifications is hindered by their inherent black-box nature. In this paper, we introduce P-TAME (Perturbation-based Trainable Attention Mechanism for Explanations), a model-agnostic method for explaining DNN-based image classifiers. P-TAME employs an auxiliary image classifier to extract features from the input image, bypassing the need to tailor the explanation method to the internal architecture of the backbone classifier being explained. Unlike traditional perturbation-based methods, which have high computational requirements, P-TAME offers an efficient alternative by generating high-resolution explanations in a single forward pass during inference. We apply P-TAME to explain the decisions of VGG-16, ResNet-50, and ViT-B-16, three distinct and widely used image classifiers. Quantitative and qualitative results show that our method matches or outperforms previous explainability methods, including model-specific approaches. Code and trained models will be released upon acceptance.
Related papers
- Towards Counterfactual and Contrastive Explainability and Transparency of DCNN Image Classifiers [0.9831489366502298]
We propose a novel method for generating interpretable counterfactual and contrastive explanations for DCNN models.
The proposed method is model intrusive that probes the internal workings of a DCNN instead of altering the input image.
One of the interesting applications of this method is misclassification analysis, where we compare the identified concepts from a particular input image and compare them with class-specific concepts to establish the validity of the model's decisions.
arXiv Detail & Related papers (2025-01-12T14:54:02Z) - COMIX: Compositional Explanations using Prototypes [46.15031477955461]
We propose a method to align machine representations with human understanding.
The proposed method, named COMIX, classifies an image by decomposing it into regions based on learned concepts.
We show that our method provides fidelity of explanations and shows that the efficiency is competitive with other inherently interpretable architectures.
arXiv Detail & Related papers (2025-01-10T15:40:31Z) - Interpretable Network Visualizations: A Human-in-the-Loop Approach for Post-hoc Explainability of CNN-based Image Classification [5.087579454836169]
State-of-the-art explainability methods generate saliency maps to show where a specific class is identified.
We introduce a post-hoc method that explains the entire feature extraction process of a Convolutional Neural Network.
We also show an approach to generate global explanations by aggregating labels across multiple images.
arXiv Detail & Related papers (2024-05-06T09:21:35Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Exploiting Diffusion Prior for Generalizable Dense Prediction [85.4563592053464]
Recent advanced Text-to-Image (T2I) diffusion models are sometimes too imaginative for existing off-the-shelf dense predictors to estimate.
We introduce DMP, a pipeline utilizing pre-trained T2I models as a prior for dense prediction tasks.
Despite limited-domain training data, the approach yields faithful estimations for arbitrary images, surpassing existing state-of-the-art algorithms.
arXiv Detail & Related papers (2023-11-30T18:59:44Z) - An Explainable Model-Agnostic Algorithm for CNN-based Biometrics
Verification [55.28171619580959]
This paper describes an adaptation of the Local Interpretable Model-Agnostic Explanations (LIME) AI method to operate under a biometric verification setting.
arXiv Detail & Related papers (2023-07-25T11:51:14Z) - Interpretations Steered Network Pruning via Amortized Inferred Saliency
Maps [85.49020931411825]
Convolutional Neural Networks (CNNs) compression is crucial to deploying these models in edge devices with limited resources.
We propose to address the channel pruning problem from a novel perspective by leveraging the interpretations of a model to steer the pruning process.
We tackle this challenge by introducing a selector model that predicts real-time smooth saliency masks for pruned models.
arXiv Detail & Related papers (2022-09-07T01:12:11Z) - Explaining Convolutional Neural Networks through Attribution-Based Input
Sampling and Block-Wise Feature Aggregation [22.688772441351308]
Methods based on class activation mapping and randomized input sampling have gained great popularity.
However, the attribution methods provide lower resolution and blurry explanation maps that limit their explanation power.
In this work, we collect visualization maps from multiple layers of the model based on an attribution-based input sampling technique.
We also propose a layer selection strategy that applies to the whole family of CNN-based models.
arXiv Detail & Related papers (2020-10-01T20:27:30Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Explainable Image Classification with Evidence Counterfactual [0.0]
We introduce SEDC as a model-agnostic instance-level explanation method for image classification.
For a given image, SEDC searches a small set of segments that, in case of removal, alters the classification.
We compare SEDC(-T) with popular feature importance methods such as LRP, LIME and SHAP, and we describe how the mentioned importance ranking issues are addressed.
arXiv Detail & Related papers (2020-04-16T08:02:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.