Explainable Image Classification with Evidence Counterfactual
- URL: http://arxiv.org/abs/2004.07511v1
- Date: Thu, 16 Apr 2020 08:02:48 GMT
- Title: Explainable Image Classification with Evidence Counterfactual
- Authors: Tom Vermeire, David Martens
- Abstract summary: We introduce SEDC as a model-agnostic instance-level explanation method for image classification.
For a given image, SEDC searches a small set of segments that, in case of removal, alters the classification.
We compare SEDC(-T) with popular feature importance methods such as LRP, LIME and SHAP, and we describe how the mentioned importance ranking issues are addressed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The complexity of state-of-the-art modeling techniques for image
classification impedes the ability to explain model predictions in an
interpretable way. Existing explanation methods generally create importance
rankings in terms of pixels or pixel groups. However, the resulting
explanations lack an optimal size, do not consider feature dependence and are
only related to one class. Counterfactual explanation methods are considered
promising to explain complex model decisions, since they are associated with a
high degree of human interpretability. In this paper, SEDC is introduced as a
model-agnostic instance-level explanation method for image classification to
obtain visual counterfactual explanations. For a given image, SEDC searches a
small set of segments that, in case of removal, alters the classification. As
image classification tasks are typically multiclass problems, SEDC-T is
proposed as an alternative method that allows specifying a target
counterfactual class. We compare SEDC(-T) with popular feature importance
methods such as LRP, LIME and SHAP, and we describe how the mentioned
importance ranking issues are addressed. Moreover, concrete examples and
experiments illustrate the potential of our approach (1) to obtain trust and
insight, and (2) to obtain input for model improvement by explaining
misclassifications.
Related papers
- Preview-based Category Contrastive Learning for Knowledge Distillation [53.551002781828146]
We propose a novel preview-based category contrastive learning method for knowledge distillation (PCKD)
It first distills the structural knowledge of both instance-level feature correspondence and the relation between instance features and category centers.
It can explicitly optimize the category representation and explore the distinct correlation between representations of instances and categories.
arXiv Detail & Related papers (2024-10-18T03:31:00Z) - Accurate Explanation Model for Image Classifiers using Class Association Embedding [5.378105759529487]
We propose a generative explanation model that combines the advantages of global and local knowledge.
Class association embedding (CAE) encodes each sample into a pair of separated class-associated and individual codes.
Building-block coherency feature extraction algorithm is proposed that efficiently separates class-associated features from individual ones.
arXiv Detail & Related papers (2024-06-12T07:41:00Z) - Interpretable Network Visualizations: A Human-in-the-Loop Approach for Post-hoc Explainability of CNN-based Image Classification [5.087579454836169]
State-of-the-art explainability methods generate saliency maps to show where a specific class is identified.
We introduce a post-hoc method that explains the entire feature extraction process of a Convolutional Neural Network.
We also show an approach to generate global explanations by aggregating labels across multiple images.
arXiv Detail & Related papers (2024-05-06T09:21:35Z) - CNN-based explanation ensembling for dataset, representation and explanations evaluation [1.1060425537315088]
We explore the potential of ensembling explanations generated by deep classification models using convolutional model.
Through experimentation and analysis, we aim to investigate the implications of combining explanations to uncover a more coherent and reliable patterns of the model's behavior.
arXiv Detail & Related papers (2024-04-16T08:39:29Z) - Classes Are Not Equal: An Empirical Study on Image Recognition Fairness [100.36114135663836]
We experimentally demonstrate that classes are not equal and the fairness issue is prevalent for image classification models across various datasets.
Our findings reveal that models tend to exhibit greater prediction biases for classes that are more challenging to recognize.
Data augmentation and representation learning algorithms improve overall performance by promoting fairness to some degree in image classification.
arXiv Detail & Related papers (2024-02-28T07:54:50Z) - ECKPN: Explicit Class Knowledge Propagation Network for Transductive
Few-shot Learning [53.09923823663554]
Class-level knowledge can be easily learned by humans from just a handful of samples.
We propose an Explicit Class Knowledge Propagation Network (ECKPN) to address this problem.
We conduct extensive experiments on four few-shot classification benchmarks, and the experimental results show that the proposed ECKPN significantly outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-16T02:29:43Z) - Contrastive Explanations for Model Interpretability [77.92370750072831]
We propose a methodology to produce contrastive explanations for classification models.
Our method is based on projecting model representation to a latent space.
Our findings shed light on the ability of label-contrastive explanations to provide a more accurate and finer-grained interpretability of a model's decision.
arXiv Detail & Related papers (2021-03-02T00:36:45Z) - Match Them Up: Visually Explainable Few-shot Image Classification [27.867833878756553]
Few-shot learning is usually based on an assumption that the pre-trained knowledge can be obtained from base (seen) categories and can be well transferred to novel (unseen) categories.
In this paper, we reveal a new way to perform FSL for image classification, using visual representations from the backbone model and weights generated by a newly-emerged explainable classifier.
Experimental results prove that the proposed method can achieve both good accuracy and satisfactory explainability on three mainstream datasets.
arXiv Detail & Related papers (2020-11-25T05:47:35Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
We present a two-stage framework for deep one-class classification.
We first learn self-supervised representations from one-class data, and then build one-class classifiers on learned representations.
In experiments, we demonstrate state-of-the-art performance on visual domain one-class classification benchmarks.
arXiv Detail & Related papers (2020-11-04T23:33:41Z) - Towards Visually Explaining Similarity Models [29.704524987493766]
We present a method to generate gradient-based visual attention for image similarity predictors.
By relying solely on the learned feature embedding, we show that our approach can be applied to any kind of CNN-based similarity architecture.
We show that our resulting attention maps serve more than just interpretability; they can be infused into the model learning process itself with new trainable constraints.
arXiv Detail & Related papers (2020-08-13T17:47:41Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
We propose a novel few-shot learning method via optimizing and fast adapting the query sample representation based on very few reference samples.
As demonstrated experimentally, the proposed model achieves state-of-the-art classification results on various benchmark few-shot classification and fine-grained recognition datasets.
arXiv Detail & Related papers (2020-08-06T05:52:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.