On the challenges of detecting MCI using EEG in the wild
- URL: http://arxiv.org/abs/2501.17871v1
- Date: Wed, 15 Jan 2025 15:20:11 GMT
- Title: On the challenges of detecting MCI using EEG in the wild
- Authors: Aayush Mishra, David Joffe, Sankara Surendra Telidevara, David S Oakley, Anqi Liu,
- Abstract summary: Recent studies have shown promising results in the detection of Mild Cognitive Impairment (MCI) using Electroencephalogram (EEG) data.
We investigate the potential limitations and challenges in developing a robust MCI detection method using two contrasting datasets.
- Score: 6.505818939553856
- License:
- Abstract: Recent studies have shown promising results in the detection of Mild Cognitive Impairment (MCI) using easily accessible Electroencephalogram (EEG) data which would help administer early and effective treatment for dementia patients. However, the reliability and practicality of such systems remains unclear. In this work, we investigate the potential limitations and challenges in developing a robust MCI detection method using two contrasting datasets: 1) CAUEEG, collected and annotated by expert neurologists in controlled settings and 2) GENEEG, a new dataset collected and annotated in general practice clinics, a setting where routine MCI diagnoses are typically made. We find that training on small datasets, as is done by most previous works, tends to produce high variance models that make overconfident predictions, and are unreliable in practice. Additionally, distribution shifts between datasets make cross-domain generalization challenging. Finally, we show that MCI detection using EEG may suffer from fundamental limitations because of the overlapping nature of feature distributions with control groups. We call for more effort in high-quality data collection in actionable settings (like general practice clinics) to make progress towards this salient goal of non-invasive MCI detection.
Related papers
- Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.
Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.
Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.
Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - LV-CadeNet: Long View Feature Convolution-Attention Fusion Encoder-Decoder Network for Clinical MEG Spike Detection [5.140340328388902]
We introduce LV-CadeNet, designed for automatic MEG spike detection in real-world clinical scenarios.
Our approach also mimics human specialists by constructing long view morphological input data.
LV-CadeNet significantly improves the accuracy of MEG spike detection, boosting it from 42.31% to 54.88% on a novel clinical dataset.
arXiv Detail & Related papers (2024-12-12T03:19:44Z) - FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide, highlighting the critical need for early diagnosis and treatment.
Machine learning (ML) methods can help diagnose CVDs early, but their performance relies on access to substantial data with high quality.
This paper presents the first real-world FL benchmark for cardiovascular disease detection, named FedCVD.
arXiv Detail & Related papers (2024-10-28T02:24:01Z) - Alzheimer's disease detection in PSG signals [2.8691549050152965]
Alzheimers disease (AD) and sleep disorders exhibit a close association, where disruptions in sleep patterns often precede the onset of early-stage AD.
This study delves into the potential of utilizing sleep-related electroencephalography (EEG) signals for the early detection of AD.
Our primary focus is on exploring semi-supervised Deep Learning techniques for the classification of EEG signals due to the limited data availability.
arXiv Detail & Related papers (2024-04-04T15:56:23Z) - MELEP: A Novel Predictive Measure of Transferability in Multi-Label ECG Diagnosis [1.3654846342364306]
We introduce MELEP, a measure designed to estimate the effectiveness of knowledge transfer from a pre-trained model to a downstream ECG diagnosis task.
Our experiments show that MELEP can predict the performance of pre-trained convolutional and recurrent deep neural networks, on small and imbalanced ECG data.
arXiv Detail & Related papers (2023-10-27T14:57:10Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Time-dependent Iterative Imputation for Multivariate Longitudinal
Clinical Data [0.0]
Time-Dependent Iterative imputation offers a practical solution for imputing time-series data.
When applied to a cohort consisting of more than 500,000 patient observations, our approach outperformed state-of-the-art imputation methods.
arXiv Detail & Related papers (2023-04-16T16:10:49Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Quality control for more reliable integration of deep learning-based
image segmentation into medical workflows [0.23609258021376836]
We present an analysis of state-of-the-art automatic quality control (QC) approaches to estimate the certainty of their outputs.
We validated the most promising approaches on a brain image segmentation task identifying white matter hyperintensities (WMH) in magnetic resonance imaging data.
arXiv Detail & Related papers (2021-12-06T16:30:43Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.