MELEP: A Novel Predictive Measure of Transferability in Multi-Label ECG Diagnosis
- URL: http://arxiv.org/abs/2311.04224v2
- Date: Wed, 12 Jun 2024 08:27:40 GMT
- Title: MELEP: A Novel Predictive Measure of Transferability in Multi-Label ECG Diagnosis
- Authors: Cuong V. Nguyen, Hieu Minh Duong, Cuong D. Do,
- Abstract summary: We introduce MELEP, a measure designed to estimate the effectiveness of knowledge transfer from a pre-trained model to a downstream ECG diagnosis task.
Our experiments show that MELEP can predict the performance of pre-trained convolutional and recurrent deep neural networks, on small and imbalanced ECG data.
- Score: 1.3654846342364306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In practical electrocardiography (ECG) interpretation, the scarcity of well-annotated data is a common challenge. Transfer learning techniques are valuable in such situations, yet the assessment of transferability has received limited attention. To tackle this issue, we introduce MELEP, which stands for Muti-label Expected Log of Empirical Predictions, a measure designed to estimate the effectiveness of knowledge transfer from a pre-trained model to a downstream multi-label ECG diagnosis task. MELEP is generic, working with new target data with different label sets, and computationally efficient, requiring only a single forward pass through the pre-trained model. To the best of our knowledge, MELEP is the first transferability metric specifically designed for multi-label ECG classification problems. Our experiments show that MELEP can predict the performance of pre-trained convolutional and recurrent deep neural networks, on small and imbalanced ECG data. Specifically, we observed strong correlation coefficients (with absolute values exceeding 0.6 in most cases) between MELEP and the actual average F1 scores of the fine-tuned models. Our work highlights the potential of MELEP to expedite the selection of suitable pre-trained models for ECG diagnosis tasks, saving time and effort that would otherwise be spent on fine-tuning these models.
Related papers
- Self-Supervised Pre-Training with Joint-Embedding Predictive Architecture Boosts ECG Classification Performance [0.0]
We create a large unsupervised pre-training dataset by combining ten public ECG databases.
We pre-train Vision Transformers using JEPA on this dataset and fine-tune them on various PTB-XL benchmarks.
arXiv Detail & Related papers (2024-10-02T08:25:57Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - Graph-Ensemble Learning Model for Multi-label Skin Lesion Classification
using Dermoscopy and Clinical Images [7.159532626507458]
This study introduces a Graph Convolution Network (GCN) to exploit prior co-occurrence between each category as a correlation matrix into the deep learning model for the multi-label classification.
We propose a Graph-Ensemble Learning Model (GELN) that views the prediction from GCN as complementary information of the predictions from the fusion model.
arXiv Detail & Related papers (2023-07-04T13:19:57Z) - Density-Aware Personalized Training for Risk Prediction in Imbalanced
Medical Data [89.79617468457393]
Training models with imbalance rate (class density discrepancy) may lead to suboptimal prediction.
We propose a framework for training models for this imbalance issue.
We demonstrate our model's improved performance in real-world medical datasets.
arXiv Detail & Related papers (2022-07-23T00:39:53Z) - MetaVA: Curriculum Meta-learning and Pre-fine-tuning of Deep Neural
Networks for Detecting Ventricular Arrhythmias based on ECGs [9.600976281032862]
Ventricular arrhythmias (VA) are the main causes of sudden cardiac death.
We propose a novel model agnostic meta-learning (MAML) with curriculum learning (CL) method to solve group-level diversity.
We conduct experiments using a combination of three publicly available ECG datasets.
arXiv Detail & Related papers (2022-02-25T01:26:19Z) - Multiple Organ Failure Prediction with Classifier-Guided Generative
Adversarial Imputation Networks [4.040013871160853]
Multiple organ failure (MOF) is a severe syndrome with a high mortality rate among Intensive Care Unit (ICU) patients.
Applying machine learning models to electronic health records is a challenge due to the pervasiveness of missing values.
arXiv Detail & Related papers (2021-06-22T15:49:01Z) - Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle
Activity for Enhanced Myoelectric Control of Hand Prostheses [78.120734120667]
We introduce a novel method, based on a long short-term memory (LSTM) network, to continuously map forearm EMG activity onto hand kinematics.
Ours is the first reported work on the prediction of hand kinematics that uses this challenging dataset.
Our results suggest that the presented method is suitable for the generation of control signals for the independent and proportional actuation of the multiple DOFs of state-of-the-art hand prostheses.
arXiv Detail & Related papers (2021-04-29T00:11:32Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.