Limits to AI Growth: The Ecological and Social Consequences of Scaling
- URL: http://arxiv.org/abs/2501.17980v2
- Date: Fri, 31 Jan 2025 23:41:52 GMT
- Title: Limits to AI Growth: The Ecological and Social Consequences of Scaling
- Authors: Eshta Bhardwaj, Rohan Alexander, Christoph Becker,
- Abstract summary: We provide a holistic review of AI scaling using four lenses.
We draw on system dynamics concepts including archetypes such as "limits to growth"
We advocate for realigning priorities and norms around scaling to prioritize sustainable and mindful advancements.
- Score: 0.7214316174103592
- License:
- Abstract: The accelerating development and deployment of AI technologies depend on the continued ability to scale their infrastructure. This has implied increasing amounts of monetary investment and natural resources. Frontier AI applications have thus resulted in rising financial, environmental, and social costs. While the factors that AI scaling depends on reach its limits, the push for its accelerated advancement and entrenchment continues. In this paper, we provide a holistic review of AI scaling using four lenses (technical, economic, ecological, and social) and review the relationships between these lenses to explore the dynamics of AI growth. We do so by drawing on system dynamics concepts including archetypes such as "limits to growth" to model the dynamic complexity of AI scaling and synthesize several perspectives. Our work maps out the entangled relationships between the technical, economic, ecological and social perspectives and the apparent limits to growth. The analysis explains how industry's responses to external limits enables continued (but temporary) scaling and how this benefits Big Tech while externalizing social and environmental damages. To avoid an "overshoot and collapse" trajectory, we advocate for realigning priorities and norms around scaling to prioritize sustainable and mindful advancements.
Related papers
- AI Scaling: From Up to Down and Out [23.65115295537283]
This position paper presents a holistic framework for AI scaling, encompassing Scaling Up, Scaling Down, and Scaling Out.
It argues that while Scaling Up of models faces inherent bottlenecks, the future trajectory of AI scaling lies in Scaling Down and Scaling Out.
We explore transformative applications in healthcare, smart manufacturing, and content creation, demonstrating how AI Scaling can enable breakthroughs in efficiency, personalization, and global connectivity.
arXiv Detail & Related papers (2025-02-02T02:14:00Z) - Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
We argue that the 'bigger is better' AI paradigm is not only fragile scientifically, but comes with undesirable consequences.
First, it is not sustainable, as its compute demands increase faster than model performance, leading to unreasonable economic requirements and a disproportionate environmental footprint.
Second, it implies focusing on certain problems at the expense of others, leaving aside important applications, e.g. health, education, or the climate.
arXiv Detail & Related papers (2024-09-21T14:43:54Z) - Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
Next several decades may well be a turning point for humanity, comparable to the industrial revolution.
Launched a decade ago, the project is committed to a perpetual series of studies by multidisciplinary experts.
We offer ten recommendations for action that collectively address both the short- and long-term potential impacts of AI technologies.
arXiv Detail & Related papers (2024-04-06T22:18:31Z) - Artificial Intelligence in Sustainable Vertical Farming [0.0]
The paper provides a comprehensive exploration of the role of AI in sustainable vertical farming.
The review synthesizes the current state of AI applications, encompassing machine learning, computer vision, the Internet of Things (IoT), and robotics.
The implications extend beyond efficiency gains, considering economic viability, reduced environmental impact, and increased food security.
arXiv Detail & Related papers (2023-11-17T22:15:41Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Towards Sustainable Artificial Intelligence: An Overview of
Environmental Protection Uses and Issues [0.0]
This paper describes the paradox of an energy-consuming technology serving the ecological challenges of tomorrow.
It draws on numerous examples from AI for Green players to present use cases and concrete examples.
The environmental dimension is part of the broader ethical problem of AI, and addressing it is crucial for ensuring the sustainability of AI in the long term.
arXiv Detail & Related papers (2022-12-22T14:31:48Z) - A Survey on AI Sustainability: Emerging Trends on Learning Algorithms
and Research Challenges [35.317637957059944]
We review major trends in machine learning approaches that can address the sustainability problem of AI.
We will highlight the major limitations of existing studies and propose potential research challenges and directions for the development of next generation of sustainable AI techniques.
arXiv Detail & Related papers (2022-05-08T09:38:35Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - The Short Anthropological Guide to the Study of Ethical AI [91.3755431537592]
Short guide serves as both an introduction to AI ethics and social science and anthropological perspectives on the development of AI.
Aims to provide those unfamiliar with the field with an insight into the societal impact of AI systems and how, in turn, these systems can lead us to rethink how our world operates.
arXiv Detail & Related papers (2020-10-07T12:25:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.