AI Scaling: From Up to Down and Out
- URL: http://arxiv.org/abs/2502.01677v1
- Date: Sun, 02 Feb 2025 02:14:00 GMT
- Title: AI Scaling: From Up to Down and Out
- Authors: Yunke Wang, Yanxi Li, Chang Xu,
- Abstract summary: This position paper presents a holistic framework for AI scaling, encompassing Scaling Up, Scaling Down, and Scaling Out.
It argues that while Scaling Up of models faces inherent bottlenecks, the future trajectory of AI scaling lies in Scaling Down and Scaling Out.
We explore transformative applications in healthcare, smart manufacturing, and content creation, demonstrating how AI Scaling can enable breakthroughs in efficiency, personalization, and global connectivity.
- Score: 23.65115295537283
- License:
- Abstract: AI Scaling has traditionally been synonymous with Scaling Up, which builds larger and more powerful models. However, the growing demand for efficiency, adaptability, and collaboration across diverse applications necessitates a broader perspective. This position paper presents a holistic framework for AI scaling, encompassing Scaling Up, Scaling Down, and Scaling Out. It argues that while Scaling Up of models faces inherent bottlenecks, the future trajectory of AI scaling lies in Scaling Down and Scaling Out. These paradigms address critical technical and societal challenges, such as reducing carbon footprint, ensuring equitable access, and enhancing cross-domain collaboration. We explore transformative applications in healthcare, smart manufacturing, and content creation, demonstrating how AI Scaling can enable breakthroughs in efficiency, personalization, and global connectivity. Additionally, we highlight key challenges, including balancing model complexity with interpretability, managing resource constraints, and fostering ethical development. By synthesizing these approaches, we propose a unified roadmap that redefines the future of AI research and application, paving the way for advancements toward Artificial General Intelligence (AGI).
Related papers
- Limits to AI Growth: The Ecological and Social Consequences of Scaling [0.7214316174103592]
We provide a holistic review of AI scaling using four lenses.
We draw on system dynamics concepts including archetypes such as "limits to growth"
We advocate for realigning priorities and norms around scaling to prioritize sustainable and mindful advancements.
arXiv Detail & Related papers (2025-01-29T20:25:42Z) - AI in the Cosmos [0.0]
I highlight examples of AI applications in astrophysics, including source classification, spectral energy distribution modeling, and discuss the achievable advancements through generative AI.
The use of AI introduces challenges, including biases, errors, and the "black box" nature of AI models, which must be resolved before their application.
These issues can be addressed through the concept of Human-Guided AI (HG-AI), which integrates human expertise and domain-specific knowledge into AI applications.
arXiv Detail & Related papers (2024-12-13T12:30:11Z) - Generative AI in Health Economics and Outcomes Research: A Taxonomy of Key Definitions and Emerging Applications, an ISPOR Working Group Report [12.204470166456561]
Generative AI shows significant potential in health economics and outcomes research (HEOR)
Generative AI shows significant potential in HEOR, enhancing efficiency, productivity, and offering novel solutions to complex challenges.
Foundation models are promising in automating complex tasks, though challenges remain in scientific reliability, bias, interpretability, and workflow integration.
arXiv Detail & Related papers (2024-10-26T15:42:50Z) - Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
We argue that the 'bigger is better' AI paradigm is not only fragile scientifically, but comes with undesirable consequences.
First, it is not sustainable, as its compute demands increase faster than model performance, leading to unreasonable economic requirements and a disproportionate environmental footprint.
Second, it implies focusing on certain problems at the expense of others, leaving aside important applications, e.g. health, education, or the climate.
arXiv Detail & Related papers (2024-09-21T14:43:54Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Over the Edge of Chaos? Excess Complexity as a Roadblock to Artificial General Intelligence [4.901955678857442]
We posited the existence of critical points, akin to phase transitions in complex systems, where AI performance might plateau or regress into instability upon exceeding a critical complexity threshold.
Our simulations demonstrated how increasing the complexity of the AI system could exceed an upper criticality threshold, leading to unpredictable performance behaviours.
arXiv Detail & Related papers (2024-07-04T05:46:39Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC)
The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace.
arXiv Detail & Related papers (2023-03-07T20:36:13Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z) - Which Design Decisions in AI-enabled Mobile Applications Contribute to
Greener AI? [7.194465440864905]
This report consists of a plan to conduct an empirical study to quantify the implications of the design decisions on AI-enabled applications performance.
We will implement both image-based and language-based neural networks in mobile applications to solve multiple image classification and text classification problems.
arXiv Detail & Related papers (2021-09-28T07:30:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.