Investigating the Monte-Carlo Tree Search Approach for the Job Shop Scheduling Problem
- URL: http://arxiv.org/abs/2501.17991v1
- Date: Wed, 29 Jan 2025 20:55:53 GMT
- Title: Investigating the Monte-Carlo Tree Search Approach for the Job Shop Scheduling Problem
- Authors: Laurie Boveroux, Damien Ernst, Quentin Louveaux,
- Abstract summary: The Job Shop Scheduling Problem (JSSP) is an optimization problem in manufacturing, where the goal is to determine the optimal sequence of jobs across different machines to minimize a given objective.
We explore the potential of Monte Carlo Tree Search (MCTS), a weighted-based reinforcement learning technique, to solve large-scale JSSPs, especially those with recirculation.
We propose several Markov Decision Process (MDP) formulations to model the JSSP for the MCTS algorithm.
In addition, we introduce a new synthetic benchmark derived from real manufacturing data, which captures the complexity of large, non-rectangular instances often
- Score: 1.9171404264679484
- License:
- Abstract: The Job Shop Scheduling Problem (JSSP) is a well-known optimization problem in manufacturing, where the goal is to determine the optimal sequence of jobs across different machines to minimize a given objective. In this work, we focus on minimising the weighted sum of job completion times. We explore the potential of Monte Carlo Tree Search (MCTS), a heuristic-based reinforcement learning technique, to solve large-scale JSSPs, especially those with recirculation. We propose several Markov Decision Process (MDP) formulations to model the JSSP for the MCTS algorithm. In addition, we introduce a new synthetic benchmark derived from real manufacturing data, which captures the complexity of large, non-rectangular instances often encountered in practice. Our experimental results show that MCTS effectively produces good-quality solutions for large-scale JSSP instances, outperforming our constraint programming approach.
Related papers
- Learning to Solve Job Shop Scheduling under Uncertainty [1.3002317221601185]
Job-Shop Scheduling Problem (JSSP) is a optimization problem where tasks need to be scheduled on machines in order to minimize criteria such as makespan or delay.
This paper introduces a new approach that leverages Deep Reinforcement Learning (DRL) techniques to search for robust solutions.
arXiv Detail & Related papers (2024-03-04T08:38:55Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z) - A Reinforcement Learning Approach for Scheduling Problems With Improved
Generalization Through Order Swapping [0.0]
JSSP falls into the category of NP-hard COP, in which solving the problem through exhaustive search becomes unfeasible.
In recent years, the research towards using DRL to solve COP has gained interest and has shown promising results in terms of solution quality and computational efficiency.
In particular, we employ the PPO algorithm that adopts the policy-gradient paradigm that is found to perform well in the constrained dispatching of jobs.
arXiv Detail & Related papers (2023-02-27T16:45:04Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Monte-Carlo Tree-Search for Leveraging Performance of Blackbox Job-Shop
Scheduling Heuristics [1.3764085113103217]
In manufacturing, the production is often done on out-of-the-shelf manufacturing lines.
We consider such a setting with a black-box job-shop system and an unknown scheduling that, for a given permutation of jobs, schedules the jobs for the black-box job-shop.
Here, the jobs need to enter the job-shop in the given order of the permutation, but may take different paths within the job shop, which depends on the black-box.
arXiv Detail & Related papers (2022-12-14T23:01:53Z) - A General Framework for Sample-Efficient Function Approximation in
Reinforcement Learning [132.45959478064736]
We propose a general framework that unifies model-based and model-free reinforcement learning.
We propose a novel estimation function with decomposable structural properties for optimization-based exploration.
Under our framework, a new sample-efficient algorithm namely OPtimization-based ExploRation with Approximation (OPERA) is proposed.
arXiv Detail & Related papers (2022-09-30T17:59:16Z) - An actor-critic algorithm with policy gradients to solve the job shop
scheduling problem using deep double recurrent agents [1.3812010983144802]
We propose a deep reinforcement learning methodology for the job shop scheduling problem (JSSP)
The aim is to build up a greedy-like able to learn on some distribution of JSSP instances, different in the number of jobs and machines.
As expected, the model can generalize, to some extent, to larger problems or instances originated by a different distribution from the one used in training.
arXiv Detail & Related papers (2021-10-18T07:55:39Z) - Fast Approximations for Job Shop Scheduling: A Lagrangian Dual Deep
Learning Method [44.4747903763245]
The Jobs shop Scheduling Problem (JSP) is a canonical optimization problem that is routinely solved for a variety of industrial purposes.
The problem is NP-hard and computationally challenging even for medium-sized instances.
This paper explores a deep learning approach to deliver efficient and accurate approximations to the problem.
arXiv Detail & Related papers (2021-10-12T21:15:19Z) - Monte Carlo Tree Search for high precision manufacturing [55.60116686945561]
We make use of an expert-based simulator and adapt the MCTS default policy to deal with the manufacturing process.
Common reasons for this are that there is no efficient simulator of the process available or there exist problems in applying MCTS to the complex rules of the process.
arXiv Detail & Related papers (2021-07-28T14:56:17Z) - Planning in Markov Decision Processes with Gap-Dependent Sample
Complexity [48.98199700043158]
We propose MDP-GapE, a new trajectory-based Monte-Carlo Tree Search algorithm for planning in a Markov Decision Process.
We prove an upper bound on the number of calls to the generative models needed for MDP-GapE to identify a near-optimal action with high probability.
arXiv Detail & Related papers (2020-06-10T15:05:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.