論文の概要: InnerThoughts: Disentangling Representations and Predictions in Large Language Models
- arxiv url: http://arxiv.org/abs/2501.17994v1
- Date: Wed, 29 Jan 2025 21:01:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:13:03.155904
- Title: InnerThoughts: Disentangling Representations and Predictions in Large Language Models
- Title(参考訳): innerThoughts: 大規模言語モデルにおける表現と予測の分離
- Authors: Didier Chételat, Joseph Cotnareanu, Rylee Thompson, Yingxue Zhang, Mark Coates,
- Abstract要約: 我々は、トレーニング質問の集合に基づいて、小さな独立したニューラルネットワーク予測モジュールを学習することを提案する。
実際、そのようなフレームワークは、LLMの表現能力を予測能力から切り離す。
- 参考スコア(独自算出の注目度): 20.39568933276831
- License:
- Abstract: Large language models (LLMs) contain substantial factual knowledge which is commonly elicited by multiple-choice question-answering prompts. Internally, such models process the prompt through multiple transformer layers, building varying representations of the problem within its hidden states. Ultimately, however, only the hidden state corresponding to the final layer and token position are used to predict the answer label. In this work, we propose instead to learn a small separate neural network predictor module on a collection of training questions, that take the hidden states from all the layers at the last temporal position as input and outputs predictions. In effect, such a framework disentangles the representational abilities of LLMs from their predictive abilities. On a collection of hard benchmarks, our method achieves considerable improvements in performance, sometimes comparable to supervised fine-tuning procedures, but at a fraction of the computational cost.
- Abstract(参考訳): 大規模言語モデル (LLMs) には、複数の質問応答プロンプトによって引き起こされる現実的な知識が含まれている。
内部的には、そのようなモデルはプロンプトを複数のトランスフォーマー層を通して処理し、その隠された状態内で問題の様々な表現を構築する。
しかし、最終的には最終層に対応する隠蔽状態とトークン位置のみを用いて回答ラベルを予測する。
本研究では,最後の時間的位置にあるすべての層から隠れた状態を入力として取り出し,予測を出力する,トレーニング質問の集合に基づいて,小さなニューラルネットワーク予測モジュールを学習することを提案する。
実際、そのようなフレームワークは、LLMの表現能力を予測能力から切り離す。
ハードベンチマークのコレクションにおいて,本手法は,教師付き微調整手順に匹敵する性能向上を実現するが,計算コストのごく一部に留まる。
関連論文リスト
- FIRP: Faster LLM inference via future intermediate representation prediction [54.897493351694195]
FIRPはデコードステップ毎に1つではなく複数のトークンを生成する。
いくつかのモデルとデータセットで1.9x-3xのスピードアップ比を示す広範な実験を行った。
論文 参考訳(メタデータ) (2024-10-27T15:53:49Z) - Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data [76.90128359866462]
本稿では,出力確率と事前学習データ頻度の相関を計測する,記憶化,分布記憶化という拡張概念を導入する。
よりシンプルで知識集約的なタスクでは記憶が大きな役割を担い、一方、一般化はより困難で推論に基づくタスクでは鍵となる。
論文 参考訳(メタデータ) (2024-07-20T21:24:40Z) - Entropy Guided Extrapolative Decoding to Improve Factuality in Large Language Models [55.45444773200529]
大きな言語モデル(LLM)は印象的な自然言語能力を示すが、幻覚に苦しむ。
最近の研究は推論時の事実性を改善するための復号化技術に焦点を当てている。
論文 参考訳(メタデータ) (2024-04-14T19:45:35Z) - Unveiling Multilinguality in Transformer Models: Exploring Language
Specificity in Feed-Forward Networks [12.7259425362286]
多言語モデルがキー値記憶をどのように活用するかを検討する。
2つ以上の言語で訓練された自己回帰モデルに対して、すべてのニューロン(層全体)は全ての言語に等しく反応するのか?
その結果,ネットワークの入力や出力に最も近い層は,中間層に比べて言語固有の振る舞いを示す傾向があることがわかった。
論文 参考訳(メタデータ) (2023-10-24T06:45:00Z) - Opening the Black Box: Analyzing Attention Weights and Hidden States in
Pre-trained Language Models for Non-language Tasks [0.8889304968879164]
階層構造を持つ制約付き算術問題に対して,事前学習した言語モデルを適用し,その注意重みと隠れ状態を分析する。
この調査は、人間の問題解決戦略と同様に、階層的な問題を適度に構造化した方法で解決するモデルによって、有望な結果を明らかにしている。
注意分析により、モデルがListOpsデータセットの長いシーケンスに一般化できると仮定できる。
論文 参考訳(メタデータ) (2023-06-21T11:48:07Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
マスク言語モデル(MLM)トレーニングの印象的なパフォーマンスの可能な説明は、そのようなモデルがNLPパイプラインで広く普及している構文構造を表現することを学びました。
本稿では,先行訓練がダウンストリームタスクでほぼ完全に成功する理由として,高次単語共起統計をモデル化できることを挙げる。
以上の結果から,純粋分布情報は,事前学習の成功を主に説明し,深い言語知識を必要とする難易度評価データセットのキュレーションの重要性を強調する。
論文 参考訳(メタデータ) (2021-04-14T06:30:36Z) - SML: a new Semantic Embedding Alignment Transformer for efficient
cross-lingual Natural Language Inference [71.57324258813674]
トランスフォーマーが質問応答、自然言語推論(NLI)、要約といった様々なタスクを精度良く実行できることは、現在この種のタスクに対処するための最良のパラダイムの1つとしてランク付けすることができる。
nliは、複雑な文を理解するための知識が必要であり、仮説と前提の関係を確立するため、これらのアーキテクチャをテストする最良のシナリオの1つである。
本稿では,自然言語推論のための多言語組込みを効率的にアライメントするための新しいアーキテクチャ siamese multilingual transformer を提案する。
論文 参考訳(メタデータ) (2021-03-17T13:23:53Z) - Unnatural Language Inference [48.45003475966808]
我々は、RoBERTaやBARTのような最先端のNLIモデルは、ランダムに並べ替えられた単語の例に不変であり、時にはよりよく機能することさえあります。
我々の発見は、自然言語理解モデルと、その進捗を測定するために使われるタスクが、本当に人間のような構文理解を必要とするという考えに疑問を投げかけている。
論文 参考訳(メタデータ) (2020-12-30T20:40:48Z) - REALM: Retrieval-Augmented Language Model Pre-Training [37.3178586179607]
言語モデルの事前学習を潜伏知識検索システムで強化し,ウィキペディアのような大規模コーパスから文書を検索し,出席できるようにする。
本研究では,このような知識検索を教師なしで事前学習する方法を初めて示す。
オープンドメイン質問回答(Open-QA)の課題を微調整し,検索型言語モデル事前学習(REALM)の有効性を実証する。
論文 参考訳(メタデータ) (2020-02-10T18:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。