Investigating Tax Evasion Emergence Using Dual Large Language Model and Deep Reinforcement Learning Powered Agent-based Simulation
- URL: http://arxiv.org/abs/2501.18177v1
- Date: Thu, 30 Jan 2025 07:14:50 GMT
- Title: Investigating Tax Evasion Emergence Using Dual Large Language Model and Deep Reinforcement Learning Powered Agent-based Simulation
- Authors: Teddy Lazebnik, Labib Shami,
- Abstract summary: This study presents a novel computational framework to examine the dynamics of tax evasion and the emergence of informal economic activity.
The framework is powered by Large Language Models and Deep Reinforcement Learning.
Findings indicate that individual personality traits, external narratives, enforcement probabilities, and the perceived efficiency of public goods provision significantly influence both the timing and extent of informal economic activity.
- Score: 0.6906005491572401
- License:
- Abstract: Tax evasion, usually the largest component of an informal economy, is a persistent challenge over history with significant socio-economic implications. Many socio-economic studies investigate its dynamics, including influencing factors, the role and influence of taxation policies, and the prediction of the tax evasion volume over time. These studies assumed such behavior is given, as observed in the real world, neglecting the "big bang" of such activity in a population. To this end, computational economy studies adopted developments in computer simulations, in general, and recent innovations in artificial intelligence (AI), in particular, to simulate and study informal economy appearance in various socio-economic settings. This study presents a novel computational framework to examine the dynamics of tax evasion and the emergence of informal economic activity. Employing an agent-based simulation powered by Large Language Models and Deep Reinforcement Learning, the framework is uniquely designed to allow informal economic behaviors to emerge organically, without presupposing their existence or explicitly signaling agents about the possibility of evasion. This provides a rigorous approach for exploring the socio-economic determinants of compliance behavior. The experimental design, comprising model validation and exploratory phases, demonstrates the framework's robustness in replicating theoretical economic behaviors. Findings indicate that individual personality traits, external narratives, enforcement probabilities, and the perceived efficiency of public goods provision significantly influence both the timing and extent of informal economic activity. The results underscore that efficient public goods provision and robust enforcement mechanisms are complementary; neither alone is sufficient to curtail informal activity effectively.
Related papers
- AI-Enabled Rent-Seeking: How Generative AI Alters Market Transparency and Efficiency [7.630624512225164]
generative artificial intelligence (AI) has transformed the information environment, creating both opportunities and challenges.
This paper explores how generative AI influences economic rent-seeking behavior and its broader impact on social welfare.
arXiv Detail & Related papers (2025-02-18T15:40:22Z) - TwinMarket: A Scalable Behavioral and Social Simulation for Financial Markets [24.354300029071418]
Large language model (LLM) agents have gained traction as simulation tools for modeling human behavior.
We introduce TwinMarket, a novel multi-agent framework that leverages LLMs to simulate socio-economic systems.
Our approach provides valuable insights into the complex interplay between individual decision-making and collective socio-economic patterns.
arXiv Detail & Related papers (2025-02-03T16:39:48Z) - Reinforcement Learning under Latent Dynamics: Toward Statistical and Algorithmic Modularity [51.40558987254471]
Real-world applications of reinforcement learning often involve environments where agents operate on complex, high-dimensional observations.
This paper addresses the question of reinforcement learning under $textitgeneral$ latent dynamics from a statistical and algorithmic perspective.
arXiv Detail & Related papers (2024-10-23T14:22:49Z) - Forecasting and stabilizing chaotic regimes in two macroeconomic models
via artificial intelligence technologies and control methods [0.3670422696827526]
One of the key tasks in the economy is forecasting the economic agents' expectations of the future values of economic variables.
The behavior of mathematical models can be irregular, including chaotic, which reduces their predictive power.
We study the regimes of behavior of two economic models and identify irregular dynamics in them.
arXiv Detail & Related papers (2023-02-20T11:55:15Z) - Finding General Equilibria in Many-Agent Economic Simulations Using Deep
Reinforcement Learning [72.23843557783533]
We show that deep reinforcement learning can discover stable solutions that are epsilon-Nash equilibria for a meta-game over agent types.
Our approach is more flexible and does not need unrealistic assumptions, e.g., market clearing.
We demonstrate our approach in real-business-cycle models, a representative family of DGE models, with 100 worker-consumers, 10 firms, and a government who taxes and redistributes.
arXiv Detail & Related papers (2022-01-03T17:00:17Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
We review the state-of-the-art theory and implementations of active inference for state-estimation, control, planning and learning.
We showcase relevant experiments that illustrate its potential in terms of adaptation, generalization and robustness.
arXiv Detail & Related papers (2021-12-03T12:10:26Z) - The AI Economist: Optimal Economic Policy Design via Two-level Deep
Reinforcement Learning [126.37520136341094]
We show that machine-learning-based economic simulation is a powerful policy and mechanism design framework.
The AI Economist is a two-level, deep RL framework that trains both agents and a social planner who co-adapt.
In simple one-step economies, the AI Economist recovers the optimal tax policy of economic theory.
arXiv Detail & Related papers (2021-08-05T17:42:35Z) - The AI Economist: Improving Equality and Productivity with AI-Driven Tax
Policies [119.07163415116686]
We train social planners that discover tax policies that can effectively trade-off economic equality and productivity.
We present an economic simulation environment that features competitive pressures and market dynamics.
We show that AI-driven tax policies improve the trade-off between equality and productivity by 16% over baseline policies.
arXiv Detail & Related papers (2020-04-28T06:57:18Z) - Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning [100.73223416589596]
We propose a cost-sensitive portfolio selection method with deep reinforcement learning.
Specifically, a novel two-stream portfolio policy network is devised to extract both price series patterns and asset correlations.
A new cost-sensitive reward function is developed to maximize the accumulated return and constrain both costs via reinforcement learning.
arXiv Detail & Related papers (2020-03-06T06:28:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.