Harnessing the Reasoning Economy: A Survey of Efficient Reasoning for Large Language Models
- URL: http://arxiv.org/abs/2503.24377v1
- Date: Mon, 31 Mar 2025 17:58:07 GMT
- Title: Harnessing the Reasoning Economy: A Survey of Efficient Reasoning for Large Language Models
- Authors: Rui Wang, Hongru Wang, Boyang Xue, Jianhui Pang, Shudong Liu, Yi Chen, Jiahao Qiu, Derek Fai Wong, Heng Ji, Kam-Fai Wong,
- Abstract summary: Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to perform complex reasoning tasks.<n>System 1 reasoning is computationally efficient but leads to suboptimal performance.<n>System 2 reasoning often incurs substantial computational costs due to its slow thinking nature and inefficient or unnecessary reasoning behaviors.
- Score: 51.85792055455284
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to perform complex reasoning tasks, transitioning from fast and intuitive thinking (System 1) to slow and deep reasoning (System 2). While System 2 reasoning improves task accuracy, it often incurs substantial computational costs due to its slow thinking nature and inefficient or unnecessary reasoning behaviors. In contrast, System 1 reasoning is computationally efficient but leads to suboptimal performance. Consequently, it is critical to balance the trade-off between performance (benefits) and computational costs (budgets), giving rise to the concept of reasoning economy. In this survey, we provide a comprehensive analysis of reasoning economy in both the post-training and test-time inference stages of LLMs, encompassing i) the cause of reasoning inefficiency, ii) behavior analysis of different reasoning patterns, and iii) potential solutions to achieve reasoning economy. By offering actionable insights and highlighting open challenges, we aim to shed light on strategies for improving the reasoning economy of LLMs, thereby serving as a valuable resource for advancing research in this evolving area. We also provide a public repository to continually track developments in this fast-evolving field.
Related papers
- Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.<n>Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - From System 1 to System 2: A Survey of Reasoning Large Language Models [76.46982455598217]
Foundational Large Language Models excel at fast decision-making but lack depth for complex reasoning.<n>OpenAI's o1/o3 and DeepSeek's R1 have demonstrated expert-level performance in fields such as mathematics and coding.
arXiv Detail & Related papers (2025-02-24T18:50:52Z) - CSCE: Boosting LLM Reasoning by Simultaneous Enhancing of Causal Significance and Consistency [11.144164626192904]
Chain-based methods like chain of thought (CoT) play a rising role in solving reasoning tasks for large language models (LLMs)<n>This paper proposes a non-chain-based reasoning framework for simultaneous consideration of causal significance and consistency.
arXiv Detail & Related papers (2024-09-20T08:28:23Z) - Comparing Inferential Strategies of Humans and Large Language Models in Deductive Reasoning [25.732397636695882]
We show that large language models (LLMs) display reasoning patterns akin to those observed in humans.
Our research demonstrates that the architecture and scale of the model significantly affect its preferred method of reasoning.
arXiv Detail & Related papers (2024-02-20T12:58:14Z) - DetermLR: Augmenting LLM-based Logical Reasoning from Indeterminacy to Determinacy [76.58614128865652]
We propose DetermLR, a novel perspective that rethinks the reasoning process as an evolution from indeterminacy to determinacy.
First, we categorize known conditions into two types: determinate and indeterminate premises This provides an oveall direction for the reasoning process and guides LLMs in converting indeterminate data into progressively determinate insights.
We automate the storage and extraction of available premises and reasoning paths with reasoning memory, preserving historical reasoning details for subsequent reasoning steps.
arXiv Detail & Related papers (2023-10-28T10:05:51Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions.
Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
arXiv Detail & Related papers (2023-10-24T19:46:04Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [31.238220405009617]
Exploiting large language models (LLMs) to tackle reasoning has garnered growing attention.
It still remains highly challenging to achieve satisfactory results in complex logical problems, characterized by plenty of premises within the context and requiring multi-hop reasoning.
In this work, we first examine the mechanism from the perspective of information flow and reveal that LLMs confront difficulties akin to human-like cognitive biases when dealing with disordered and irrelevant content in reasoning tasks.
arXiv Detail & Related papers (2023-10-05T04:47:49Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.