論文の概要: Ground Awareness in Deep Learning for Large Outdoor Point Cloud Segmentation
- arxiv url: http://arxiv.org/abs/2501.18246v1
- Date: Thu, 30 Jan 2025 10:27:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:14:59.793961
- Title: Ground Awareness in Deep Learning for Large Outdoor Point Cloud Segmentation
- Title(参考訳): 大規模屋外クラウドセグメンテーションのための深層学習におけるグラウンドアウェアネス
- Authors: Kevin Qiu, Dimitri Bulatov, Dorota Iwaszczuk,
- Abstract要約: 密集した屋外の点雲では、機械学習モデルの受容場は小さすぎて、点の周囲や文脈を正確に決定できない。
点雲からDTM(Digital Terrain Models)を計算することにより、地形から点までの垂直距離である相対的な標高特徴を抽出する。
RandLA-Netは、大規模な点雲の効率的なセマンティックセマンティックセグメンテーションに使用される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents an analysis of utilizing elevation data to aid outdoor point cloud semantic segmentation through existing machine-learning networks in remote sensing, specifically in urban, built-up areas. In dense outdoor point clouds, the receptive field of a machine learning model may be too small to accurately determine the surroundings and context of a point. By computing Digital Terrain Models (DTMs) from the point clouds, we extract the relative elevation feature, which is the vertical distance from the terrain to a point. RandLA-Net is employed for efficient semantic segmentation of large-scale point clouds. We assess its performance across three diverse outdoor datasets captured with varying sensor technologies and sensor locations. Integration of relative elevation data leads to consistent performance improvements across all three datasets, most notably in the Hessigheim dataset, with an increase of 3.7 percentage points in average F1 score from 72.35% to 76.01%, by establishing long-range dependencies between ground and objects. We also explore additional local features such as planarity, normal vectors, and 2D features, but their efficacy varied based on the characteristics of the point cloud. Ultimately, this study underscores the important role of the non-local relative elevation feature for semantic segmentation of point clouds in remote sensing applications.
- Abstract(参考訳): 本稿では,都市部におけるリモートセンシングにおける既存の機械学習ネットワークを通じて,屋外のクラウドセマンティックセマンティックセマンティクスを支援するために,標高データを利用した解析を行う。
密集した屋外の点雲では、機械学習モデルの受容場は小さすぎて、点の周囲や文脈を正確に決定できない。
点雲からDTM(Digital Terrain Models)を計算することにより、地形から点までの垂直距離である相対的な標高特徴を抽出する。
RandLA-Netは、大規模な点雲の効率的なセマンティックセマンティックセグメンテーションに使用される。
各種センサ技術とセンサ位置で収集した3つの屋外データセットのパフォーマンスを評価する。
相対的な標高データの統合は、3つのデータセットすべてで一貫したパフォーマンス改善をもたらし、特にヘシグハイムデータセットでは、平均F1得点の3.7%が72.35%から76.01%に増加し、グラウンドとオブジェクト間の長距離依存関係を確立している。
また, 平面性, 正規ベクトル, 2次元特徴などの局所的特徴についても検討するが, その有効性は点雲の特性によって異なる。
究極的には、リモートセンシングアプリケーションにおける点雲のセマンティックセグメンテーションにおける非局所的相対的標高特徴の重要性を浮き彫りにしている。
関連論文リスト
- InvariantOODG: Learning Invariant Features of Point Clouds for
Out-of-Distribution Generalization [17.96808017359983]
本稿では,異なる分布を持つ点雲間の不変性を学習するInvariantOODGを提案する。
学習可能なアンカーポイントの集合を定義し、最も有用な局所領域と入力点の雲を増大させる2種類の変換を定義する。
実験により,提案モデルが3次元領域一般化ベンチマークに与える影響を実証した。
論文 参考訳(メタデータ) (2024-01-08T09:41:22Z) - Point2Vec for Self-Supervised Representation Learning on Point Clouds [66.53955515020053]
Data2vecをポイントクラウド領域に拡張し、いくつかのダウンストリームタスクで推奨される結果を報告します。
我々は、ポイントクラウド上でData2vecライクな事前トレーニングの可能性を解放するpoint2vecを提案する。
論文 参考訳(メタデータ) (2023-03-29T10:08:29Z) - Point-Syn2Real: Semi-Supervised Synthetic-to-Real Cross-Domain Learning
for Object Classification in 3D Point Clouds [14.056949618464394]
LiDAR 3Dポイントクラウドデータを用いたオブジェクト分類は、自律運転のような現代的なアプリケーションにとって重要である。
本稿では,ポイントクラウドのマニュアルアノテーションに依存しない半教師付きクロスドメイン学習手法を提案する。
我々は、ポイントクラウド上でのクロスドメイン学習のための新しいベンチマークデータセットであるPoint-Syn2Realを紹介した。
論文 参考訳(メタデータ) (2022-10-31T01:53:51Z) - SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point
Clouds [52.624157840253204]
センサットウルバン(SensatUrban)は、イギリスの3都市から収集された7.6km2の30億点近くからなる、都市規模のUAV測光点クラウドデータセットである。
データセットの各ポイントは、粒度の細かいセマンティックアノテーションでラベル付けされ、その結果、既存の最大のフォトグラムポイントクラウドデータセットの3倍の大きさのデータセットが生成される。
論文 参考訳(メタデータ) (2022-01-12T14:48:11Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
我々はRandLA-Netを紹介した。RandLA-Netは、大規模ポイントクラウドのポイントごとの意味を推論する、効率的で軽量なニューラルネットワークアーキテクチャである。
我々のアプローチの鍵は、より複雑な点選択アプローチではなく、ランダムな点サンプリングを使用することである。
我々のRandLA-Netは、既存のアプローチよりも最大200倍高速な1回のパスで100万ポイントを処理できます。
論文 参考訳(メタデータ) (2021-07-06T05:08:34Z) - Semantic Segmentation for Real Point Cloud Scenes via Bilateral
Augmentation and Adaptive Fusion [38.05362492645094]
現実世界の複雑な環境を直感的に捉えることができますが、3Dデータの生の性質のため、機械認識にとって非常に困難です。
我々は、現実に収集された大規模クラウドデータに対して、重要な視覚的タスク、セマンティックセグメンテーションに集中する。
3つのベンチマークで最先端のネットワークと比較することにより,ネットワークの有効性を実証する。
論文 参考訳(メタデータ) (2021-03-12T04:13:20Z) - Semantic Segmentation on Swiss3DCities: A Benchmark Study on Aerial
Photogrammetric 3D Pointcloud Dataset [67.44497676652173]
スイスの3つの都市から採取された総面積2.7 km2$の屋外3Dポイントクラウドデータセットを紹介した。
データセットは、ポイントごとのラベルによるセマンティックセグメンテーションのために手動でアノテートされ、高解像度カメラを備えたマルチローターによって取得された画像のフォトグラムを用いて構築される。
論文 参考訳(メタデータ) (2020-12-23T21:48:47Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
我々は、30億点近い注釈付きポイントを持つ都市規模の測光点クラウドデータセットを提示する。
私たちのデータセットは、イギリスの3つの都市からなり、都市の景観の約7.6km2をカバーしています。
我々は,データセット上での最先端アルゴリズムの性能を評価し,その結果を包括的に分析する。
論文 参考訳(メタデータ) (2020-09-07T14:47:07Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
複数の屋外シーン理解タスクに対して,リッチな注釈付き3Dポイントクラウドデータセットを提案する。
データセットは階層型ラベルとインスタンスベースのラベルの両方でポイントワイズアノテートされている。
本稿では,3次元点雲分割のための階層的学習問題を定式化し,様々な階層間の整合性を評価することを提案する。
論文 参考訳(メタデータ) (2020-08-11T19:10:32Z) - MNEW: Multi-domain Neighborhood Embedding and Weighting for Sparse Point
Clouds Segmentation [1.2380933178502298]
マルチドメインの近傍埋め込みや,その幾何学的距離,特徴的類似度,周辺空間の疎度に基づく注意重み付けなどを含むMNEWを提案する。
MNEWは、LiDARベースの自動運転認識の適用において重要であるスパースポイントクラウドの最高性能を達成する。
論文 参考訳(メタデータ) (2020-04-05T18:02:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。