論文の概要: Reducing Aleatoric and Epistemic Uncertainty through Multi-modal Data Acquisition
- arxiv url: http://arxiv.org/abs/2501.18268v1
- Date: Thu, 30 Jan 2025 11:05:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:14:34.235054
- Title: Reducing Aleatoric and Epistemic Uncertainty through Multi-modal Data Acquisition
- Title(参考訳): マルチモーダルデータ取得による動脈・てんかん不確かさの低減
- Authors: Arthur Hoarau, Benjamin Quost, Sébastien Destercke, Willem Waegeman,
- Abstract要約: 本稿では,不確実性不整合が行動可能な決定を導く,革新的なデータ取得フレームワークを提案する。
主な仮説は、モダリティの数が増加するにつれてアレタリック不確かさが減少するということである。
データ取得フレームワークを紹介するために、2つのマルチモーダルデータセット上で概念実証実装を提供する。
- 参考スコア(独自算出の注目度): 5.468547489755107
- License:
- Abstract: To generate accurate and reliable predictions, modern AI systems need to combine data from multiple modalities, such as text, images, audio, spreadsheets, and time series. Multi-modal data introduces new opportunities and challenges for disentangling uncertainty: it is commonly assumed in the machine learning community that epistemic uncertainty can be reduced by collecting more data, while aleatoric uncertainty is irreducible. However, this assumption is challenged in modern AI systems when information is obtained from different modalities. This paper introduces an innovative data acquisition framework where uncertainty disentanglement leads to actionable decisions, allowing sampling in two directions: sample size and data modality. The main hypothesis is that aleatoric uncertainty decreases as the number of modalities increases, while epistemic uncertainty decreases by collecting more observations. We provide proof-of-concept implementations on two multi-modal datasets to showcase our data acquisition framework, which combines ideas from active learning, active feature acquisition and uncertainty quantification.
- Abstract(参考訳): 正確で信頼性の高い予測を生成するために、現代のAIシステムは、テキスト、画像、オーディオ、スプレッドシート、時系列などの複数のモードのデータを組み合わせる必要がある。
機械学習のコミュニティでは、より多くのデータを集めることでてんかんの不確実性を減らすことができるが、アレタリック不確実性は不可避である、と一般的に考えられている。
しかし、この仮定は、異なるモダリティから情報が得られたとき、現代のAIシステムにおいて挑戦される。
本稿では,不確実性不整合が動作可能な決定を導き,サンプルサイズとデータモダリティの2方向のサンプリングを可能にする,革新的なデータ取得フレームワークを提案する。
主な仮説は、モジュラリティの数が増加するにつれてアレタリック不確実性は減少し、一方、疫学的不確実性はより多くの観測を収集することによって減少する、というものである。
我々は2つのマルチモーダルデータセット上で概念実証実装を提供し、アクティブラーニング、アクティブな特徴獲得、不確実性定量化のアイデアを組み合わせたデータ取得フレームワークを紹介します。
関連論文リスト
- Multimodal Fusion on Low-quality Data: A Comprehensive Survey [110.22752954128738]
本稿では,野生におけるマルチモーダル核融合の共通課題と最近の進歩について考察する。
低品質データ上でのマルチモーダル融合で直面する4つの主な課題を同定する。
この新たな分類によって、研究者はフィールドの状態を理解し、いくつかの潜在的な方向を特定することができる。
論文 参考訳(メタデータ) (2024-04-27T07:22:28Z) - Borrowing Treasures from Neighbors: In-Context Learning for Multimodal Learning with Missing Modalities and Data Scarcity [9.811378971225727]
本稿では、欠落したモダリティに関する現在の研究を低データ体制に拡張する。
フルモダリティデータと十分なアノテートされたトレーニングサンプルを取得することは、しばしばコストがかかる。
本稿では,この2つの重要な問題に対処するために,検索強化したテキスト内学習を提案する。
論文 参考訳(メタデータ) (2024-03-14T14:19:48Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Hinge-Wasserstein: Estimating Multimodal Aleatoric Uncertainty in Regression Tasks [9.600416563894658]
画像からパラメータ値への回帰について検討し、ここでは確率分布を予測して不確実性を検出することが一般的である。
従来の損失関数は、完全な真実分布が存在しない場合、確率分布の予測が低く、自信が強くなる。
トレーニング中の弱い二次モードのペナルティを低減するために, ハンジ・ワッサースタイン(Hungge-Wasserstein)を提案する。
論文 参考訳(メタデータ) (2023-06-01T11:20:09Z) - Informative Data Selection with Uncertainty for Multi-modal Object
Detection [25.602915381482468]
普遍的不確実性を考慮したマルチモーダル融合モデルを提案する。
本モデルでは,融合時のランダム性を低減し,信頼性の高い出力を生成する。
我々の核融合モデルでは、ガウス、運動のぼやけ、凍土のような激しいノイズ干渉に対してわずかにしか耐えられないことが証明されている。
論文 参考訳(メタデータ) (2023-04-23T16:36:13Z) - Exploring and Exploiting Uncertainty for Incomplete Multi-View
Classification [47.82610025809371]
不確実性による不完全多視点データ分類(UIMC)モデルを提案し,不完全多視点データを分類する。
具体的には、各欠落したデータを、利用可能なビューに基づいて分散条件でモデル化し、不確実性を導入する。
本手法は,信頼性と信頼性の両方の観点から,最先端の性能を確立する。
論文 参考訳(メタデータ) (2023-04-11T11:57:48Z) - ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference [54.17205151960878]
汎用的でデプロイが容易なサンプリング不要のアプローチを導入します。
我々は,最先端手法と同等の信頼性のある不確実性推定を,計算コストを著しく低減した形で生成する。
論文 参考訳(メタデータ) (2022-11-21T13:23:09Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
自動対物生成は、生成した対物インスタンスのいくつかの側面を考慮すべきである。
本稿では, 対実例生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:02:53Z) - Uncertainty-Aware Multiple Instance Learning fromLarge-Scale Long Time
Series Data [20.2087807816461]
本稿では,最も関連性の高い周期自動識別のための不確実性認識型マルチインスタンス(MIL)フレームワークを提案する。
さらに、別のモデルを訓練し、不確実性を考慮した融合を行うことにより、信頼できない予測を調整できる別のモダリティを組み込む。
実験結果から, 提案手法は, 軌道に基づく容器の形状を効果的に検出できることを示した。
論文 参考訳(メタデータ) (2021-11-16T17:09:02Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。