Squeezing at the normal-mode splitting frequency of a nonlinear coupled cavity
- URL: http://arxiv.org/abs/2501.18316v1
- Date: Thu, 30 Jan 2025 12:50:40 GMT
- Title: Squeezing at the normal-mode splitting frequency of a nonlinear coupled cavity
- Authors: Jonas Junker, Jiayi Qin, Vaishali B. Adya, Nutsinee Kijbunchoo, Sheon S. Y. Chua, Terry G. McRae, Bram J. J. Slagmolen, David E. McClelland,
- Abstract summary: We report the first experimental demonstration of squeezing generated in a quantum-enhanced coupled-cavity system.
Our results underscore the promise of coupled-cavity squeezers for advanced quantum applications, including gravitational wave detection and precision sensing.
- Score: 0.0
- License:
- Abstract: Coupled optical cavities, which support normal modes, play a critical role in optical filtering, sensing, slow-light generation, and quantum state manipulation. Recent theoretical work has proposed incorporating nonlinear materials into these systems to enable novel quantum technologies. Here, we report the first experimental demonstration of squeezing generated in a quantum-enhanced coupled-cavity system, achieving a quantum noise reduction of 3.5 dB at a normal-mode splitting frequency of 7.47 MHz. We provide a comprehensive analysis of the system's loss mechanisms and performance limitations, validating theoretical predictions. Our results underscore the promise of coupled-cavity squeezers for advanced quantum applications, including gravitational wave detection and precision sensing.
Related papers
- Frequency-dependent squeezing via Einstein-Podolsky-Rosen entanglement based on silicon nitride microring resonators [14.331164698709433]
A frequency-dependent squeezing technique has overcome the standard quantum limit in optomechanical force measurements.
Developments in integrated photonics have paved the way for the emergence of integrated Kerr quantum frequency combs.
A platform has been established for designing EPR entangled quantum frequency combs using on-chip silicon nitride microring resonators.
arXiv Detail & Related papers (2024-09-14T06:50:32Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Simulating Gaussian boson sampling quantum computers [68.8204255655161]
We briefly review recent theoretical methods to simulate experimental Gaussian boson sampling networks.
We focus mostly on methods that use phase-space representations of quantum mechanics.
A brief overview of the theory of GBS, recent experiments and other types of methods are also presented.
arXiv Detail & Related papers (2023-08-02T02:03:31Z) - Quantum noise dynamics in nonlinear pulse propagation [0.0]
We numerically study quantum noise dynamics and multimode entanglement in several ultrafast systems.
We show that our model exhibits nonlinear dynamics in both the mean field and the quantum correlations.
arXiv Detail & Related papers (2023-07-11T17:50:33Z) - Entanglement-enhanced dual-comb spectroscopy [0.7340017786387767]
Dual-comb interferometry harnesses the interference of two laser frequency combs to provide unprecedented capability in spectroscopy applications.
We propose an entanglement-enhanced dual-comb spectroscopy protocol that leverages quantum resources to significantly improve the signal-to-noise ratio performance.
Our results show significant quantum advantages in the uW to mW power range, making this technique particularly attractive for biological and chemical sensing applications.
arXiv Detail & Related papers (2023-04-04T03:57:53Z) - Quantum effects beyond mean-field treatment in quantum optics [5.148894494637909]
Mean-field treatment (MFT) is frequently applied to approximately predict the dynamics of quantum optics systems.
Here, we provide a general and systematic theoretical framework based on the perturbation theory in company with the MFT to capture unanticipated quantum effects.
Our work clearly reveals the attendant quantum effects under mean-field treatment and provides a more precise theoretical framework to describe quantum optics systems.
arXiv Detail & Related papers (2021-11-29T15:45:24Z) - Two-mode Schr\"odinger-cat states with nonlinear optomechanics:
generation and verification of non-Gaussian mechanical entanglement [0.0]
We introduce a pulsed approach that utilizes the nonlinearity of the radiation-pressure interaction combined with photon-counting measurements.
We describe a protocol using subsequent pulsed interactions to verify the non-Gaussian entanglement generated.
Our scheme offers significant potential for further research and development that utilizes such non-Gaussian states for quantum-information and sensing applications.
arXiv Detail & Related papers (2021-09-17T12:58:52Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.