DeepExtractor: Time-domain reconstruction of signals and glitches in gravitational wave data with deep learning
- URL: http://arxiv.org/abs/2501.18423v1
- Date: Thu, 30 Jan 2025 15:25:30 GMT
- Title: DeepExtractor: Time-domain reconstruction of signals and glitches in gravitational wave data with deep learning
- Authors: Tom Dooney, Harsh Narola, Stefano Bromuri, R. Lyana Curier, Chris Van Den Broeck, Sarah Caudill, Daniel Stanley Tan,
- Abstract summary: We present DeepExtractor, a deep learning framework designed to reconstruct signals and glitches with power exceeding interferometer noise.
We validate DeepExtractor's effectiveness through three experiments.
DeepExtractor achieves a median mismatch of only 0.9% for simulated glitches, outperforming several deep learning baselines.
- Score: 2.637315570643508
- License:
- Abstract: Gravitational wave (GW) interferometers, detect faint signals from distant astrophysical events, such as binary black hole mergers. However, their high sensitivity also makes them susceptible to background noise, which can obscure these signals. This noise often includes transient artifacts called "glitches" that can mimic astrophysical signals or mask their characteristics. Fast and accurate reconstruction of both signals and glitches is crucial for reliable scientific inference. In this study, we present DeepExtractor, a deep learning framework designed to reconstruct signals and glitches with power exceeding interferometer noise, regardless of their source. We design DeepExtractor to model the inherent noise distribution of GW interferometers, following conventional assumptions that the noise is Gaussian and stationary over short time scales. It operates by predicting and subtracting the noise component of the data, retaining only the clean reconstruction. Our approach achieves superior generalization capabilities for arbitrary signals and glitches compared to methods that directly map inputs to the clean training waveforms. We validate DeepExtractor's effectiveness through three experiments: (1) reconstructing simulated glitches injected into simulated detector noise, (2) comparing performance with the state-of-the-art BayesWave algorithm, and (3) analyzing real data from the Gravity Spy dataset to demonstrate effective glitch subtraction from LIGO strain data. DeepExtractor achieves a median mismatch of only 0.9% for simulated glitches, outperforming several deep learning baselines. Additionally, DeepExtractor surpasses BayesWave in glitch recovery, offering a dramatic computational speedup by reconstructing one glitch sample in approx. 0.1 seconds on a CPU, compared to BayesWave's processing time of approx. one hour per glitch.
Related papers
- Unsupervised Learning Approach to Anomaly Detection in Gravitational Wave Data [0.0]
We propose an unsupervised anomaly detection method using variational autoencoders (VAEs) to analyze Gravitational waves (GW) data.
VAEs accurately reconstructs noise inputs while failing to reconstruct anomalies, such as GW signals, which results in measurable spikes in the reconstruction error.
This study introduces VAEs as a robust, unsupervised approach for identifying anomalies in GW data, which offers a scalable framework for detecting known and potentially new phenomena in physics.
arXiv Detail & Related papers (2024-11-29T03:18:40Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Efficient Machine Learning Ensemble Methods for Detecting Gravitational
Wave Glitches in LIGO Time Series [0.614609308117547]
We propose two new Machine and Deep learning ensemble approaches for detecting different types of noise and patterns in datasets from GW observatories.
We train and test our models on a dataset consisting of annotated time series from real-world data collected by the Advanced Laser Interferometer GW Observatory.
We empirically show that the best overall accuracy is obtained by the proposed DeepWaves Ensemble, followed close by the ShallowWaves Ensemble.
arXiv Detail & Related papers (2023-11-02T10:07:30Z) - A Machine Learning approach for correcting radial velocities using
physical observables [0.0]
Using simulations and real data, we investigate the capabilities of a Deep Neural Network approach to produce activity free Doppler measurements of stars.
We demonstrate that the RV-independent approach can drastically reduce spurious Doppler variability from known physical effects.
We observe a good match of the correction with the observed variability, but we also find that the noise reduction is not as good as in the simulations.
arXiv Detail & Related papers (2023-01-30T13:25:00Z) - Neural Importance Sampling for Rapid and Reliable Gravitational-Wave
Inference [59.040209568168436]
We first generate a rapid proposal for the Bayesian posterior using neural networks, and then attach importance weights based on the underlying likelihood and prior.
This provides (1) a corrected posterior free from network inaccuracies, (2) a performance diagnostic (the sample efficiency) for assessing the proposal and identifying failure cases, and (3) an unbiased estimate of the Bayesian evidence.
We carry out a large study analyzing 42 binary black hole mergers observed by LIGO and Virgo with the SEOBNRv4PHM and IMRPhenomHMXP waveform models.
arXiv Detail & Related papers (2022-10-11T18:00:02Z) - MLGWSC-1: The first Machine Learning Gravitational-Wave Search Mock Data
Challenge [110.7678032481059]
We present the results of the first Machine Learning Gravitational-Wave Search Mock Data Challenge (MLGWSC-1).
For this challenge, participating groups had to identify gravitational-wave signals from binary black hole mergers of increasing complexity and duration embedded in progressively more realistic noise.
Our results show that current machine learning search algorithms may already be sensitive enough in limited parameter regions to be useful for some production settings.
arXiv Detail & Related papers (2022-09-22T16:44:59Z) - A novel multi-layer modular approach for real-time fuzzy-identification
of gravitational-wave signals [0.0]
We propose a novel layered framework for real-time detection of gravitational waves inspired by speech processing techniques.
The paper describes the basic concepts of the framework and the derivation of the first three layers.
Compared to more complex approaches, such as convolutional neural networks, our framework has lower accuracy.
arXiv Detail & Related papers (2022-06-13T09:48:38Z) - On the Frequency Bias of Generative Models [61.60834513380388]
We analyze proposed measures against high-frequency artifacts in state-of-the-art GAN training.
We find that none of the existing approaches can fully resolve spectral artifacts yet.
Our results suggest that there is great potential in improving the discriminator.
arXiv Detail & Related papers (2021-11-03T18:12:11Z) - Real-time gravitational-wave science with neural posterior estimation [64.67121167063696]
We demonstrate unprecedented accuracy for rapid gravitational-wave parameter estimation with deep learning.
We analyze eight gravitational-wave events from the first LIGO-Virgo Gravitational-Wave Transient Catalog.
We find very close quantitative agreement with standard inference codes, but with inference times reduced from O(day) to a minute per event.
arXiv Detail & Related papers (2021-06-23T18:00:05Z) - Detection of gravitational-wave signals from binary neutron star mergers
using machine learning [52.77024349608834]
We introduce a novel neural-network based machine learning algorithm that uses time series strain data from gravitational-wave detectors.
We find an improvement by a factor of 6 in sensitivity to signals with signal-to-noise ratio below 25.
A conservative estimate indicates that our algorithm introduces on average 10.2 s of latency between signal arrival and generating an alert.
arXiv Detail & Related papers (2020-06-02T10:20:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.