論文の概要: Differentially Private Steering for Large Language Model Alignment
- arxiv url: http://arxiv.org/abs/2501.18532v2
- Date: Thu, 20 Mar 2025 09:58:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 15:30:51.952172
- Title: Differentially Private Steering for Large Language Model Alignment
- Title(参考訳): 大規模言語モデルアライメントのための微分プライベートステアリング
- Authors: Anmol Goel, Yaxi Hu, Iryna Gurevych, Amartya Sanyal,
- Abstract要約: 本稿では,大規模言語モデルとプライベートデータセットの整合性に関する最初の研究について述べる。
本研究は,プライバシ保証付きアクティベーションを編集するPSA(Private Steering for LLM Alignment)アルゴリズムを提案する。
以上の結果から,PSAはLPMアライメントのDP保証を実現し,性能の低下を最小限に抑えることができた。
- 参考スコア(独自算出の注目度): 55.30573701583768
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aligning Large Language Models (LLMs) with human values and away from undesirable behaviors (such as hallucination) has become increasingly important. Recently, steering LLMs towards a desired behavior via activation editing has emerged as an effective method to mitigate harmful generations at inference-time. Activation editing modifies LLM representations by preserving information from positive demonstrations (e.g., truthful) and minimising information from negative demonstrations (e.g., hallucinations). When these demonstrations come from a private dataset, the aligned LLM may leak private information contained in those private samples. In this work, we present the first study of aligning LLM behavior with private datasets. Our work proposes the Private Steering for LLM Alignment (PSA) algorithm to edit LLM activations with differential privacy (DP) guarantees. We conduct extensive experiments on seven different benchmarks with open-source LLMs of different sizes (0.5B to 7B) and model families (LlaMa, Qwen, Mistral and Gemma). Our results show that PSA achieves DP guarantees for LLM alignment with minimal loss in performance, including alignment metrics, open-ended text generation quality, and general-purpose reasoning. We also develop the first Membership Inference Attack (MIA) for evaluating and auditing the empirical privacy for the problem of LLM steering via activation editing. Our experiments support the theoretical guarantees by showing improved guarantees for our PSA algorithm compared to several existing non-private techniques.
- Abstract(参考訳): 人的価値と好ましくない行動(幻覚など)から遠ざかる大規模言語モデル(LLM)がますます重要になっている。
近年, アクティベーション編集による所望の行動に向けてLSMを操る手法が, 推論時に有害な世代を緩和する有効な方法として出現している。
アクティベーション編集は、ポジティブなデモンストレーション(例:真実)からの情報を保持し、ネガティブなデモ(例:幻覚)からの情報を最小限にすることで、LCM表現を修飾する。
これらのデモがプライベートデータセットから来ると、アライメントされたLCMは、これらのプライベートサンプルに含まれるプライベート情報をリークする可能性がある。
本研究では,LLMの動作とプライベートデータセットとの整合性に関する最初の研究について述べる。
本研究は, LLMアライメントのためのプライベートステアリング(PSA)アルゴリズムを提案し, LLMアクティベーションをDP(差分プライバシ)保証で編集する。
異なるサイズ (0.5B から 7B) のオープンソース LLM とモデルファミリ (LlaMa, Qwen, Mistral, Gemma) を用いた7種類のベンチマーク実験を行った。
以上の結果からPSAは,アライメント指標,オープンエンドテキスト生成品質,汎用推論など,LCMアライメントを最小限に抑えたDP保証を実現していることがわかった。
また, LLMステアリングの問題に対して, アクティベーション編集による経験的プライバシの評価と監査を行うための最初のメンバーシップ推論攻撃(MIA)を開発した。
提案手法は,従来のいくつかの非私的手法と比較して,PSAアルゴリズムの信頼性の向上を図り,理論的保証を支援する。
関連論文リスト
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
LLM-Lassoは大規模言語モデル(LLM)を利用してラッソ回帰における特徴選択を導くフレームワークである。
LLMは各特徴に対してペナルティ因子を生成し、単純でチューニング可能なモデルを用いてラスソペナルティの重みに変換される。
LLMによりより関連づけられた特徴は、より低い罰を受け、最終モデルに保持される可能性を高める。
論文 参考訳(メタデータ) (2025-02-15T02:55:22Z) - Evaluation of LLM Vulnerabilities to Being Misused for Personalized Disinformation Generation [0.5070610131852027]
大型言語モデル(LLM)は、偽ニュース記事を生成するために効果的に誤用することができる。
本研究は,近年のオープンおよびクローズドLCMの脆弱性評価により,このギャップを埋めるものである。
以上の結果から,より強力な安全フィルターとディファイラの必要性が示された。
論文 参考訳(メタデータ) (2024-12-18T09:48:53Z) - Open LLMs are Necessary for Current Private Adaptations and Outperform their Closed Alternatives [18.907157609731634]
閉LLMのプライベート適応のための4つの最新の手法のプライバシ保護と性能について分析する。
真のプライバシ保護のLLM適応を実現するために、現在の方法やモデルを考慮して、オープンなLLMを使用する必要がある。
論文 参考訳(メタデータ) (2024-11-02T12:02:09Z) - LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints [86.59857711385833]
実世界のマルチ制約命令に従うLLMの能力を評価するために設計された最初のベンチマークであるRealInstructを紹介する。
オープンソースモデルとプロプライエタリモデルのパフォーマンスギャップを解決するため,Decompose, Critique and Refine(DeCRIM)自己補正パイプラインを提案する。
この結果から,DeCRIMはフィードバックが弱い場合でも,RealInstructでは7.3%,IFEvalでは8.0%,Mistralでは7.3%向上した。
論文 参考訳(メタデータ) (2024-10-09T01:25:10Z) - zsLLMCode: An Effective Approach for Functional Code Embedding via LLM with Zero-Shot Learning [6.976968804436321]
大型言語モデル(LLM)はゼロショット学習の能力を持ち、訓練や微調整を必要としない。
LLMを用いた関数型コード埋め込みを生成する新しいアプローチであるzsLLMCodeを提案する。
論文 参考訳(メタデータ) (2024-09-23T01:03:15Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
大規模言語モデル(LLM)は多くのドメインに不可欠なものとなり、データ管理、マイニング、分析におけるアプリケーションを大幅に進歩させた。
この問題の批判的な性質にもかかわらず、LLMにおけるデータプライバシのリスクを総合的に評価する文献は存在しない。
本稿では,LLMにおけるデータプライバシリスクの体系的評価を目的としたツールキットであるLLM-PBEを紹介する。
論文 参考訳(メタデータ) (2024-08-23T01:37:29Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Locally Differentially Private In-Context Learning [8.659575019965152]
大規模な事前学習言語モデル(LLM)は、驚くべきインコンテキスト学習(ICL)能力を示している。
本稿では,文脈内学習(LDP-ICL)の局所的差分的フレームワークを提案する。
変圧器の勾配勾配降下による文脈内学習のメカニズムを考慮し,LDP-ICLにおけるプライバシとユーティリティのトレードオフ分析を行う。
論文 参考訳(メタデータ) (2024-05-07T06:05:43Z) - Purifying Large Language Models by Ensembling a Small Language Model [39.57304668057076]
未処理データによる負の効果からLCMを浄化する簡易かつ容易に実装できる手法を提案する。
良性および小言語モデル(SLM)を用いたLLMのアンサンブルの有効性を実証的に検証した。
論文 参考訳(メタデータ) (2024-02-19T14:00:39Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - PrivLM-Bench: A Multi-level Privacy Evaluation Benchmark for Language Models [42.20437015301152]
言語モデル(LM)のプライバシー漏洩を評価するベンチマークであるPrivLM-Benchを提案する。
DPパラメータのみを報告するのではなく、PrivLM-Benchは実際の使用中に無視された推論データのプライバシに光を当てる。
メインストリームLMのためのGLUEの3つのデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-11-07T14:55:52Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - The Internal State of an LLM Knows When It's Lying [18.886091925252174]
大規模言語モデル(LLM)は、様々なタスクにおいて例外的なパフォーマンスを示している。
彼らの最も顕著な欠点の1つは、自信のあるトーンで不正確または偽の情報を生成することである。
我々は, LLMの内部状態が文の真偽を明らかにするのに有効であることを示す証拠を提供する。
論文 参考訳(メタデータ) (2023-04-26T02:49:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。