Foundational Models for 3D Point Clouds: A Survey and Outlook
- URL: http://arxiv.org/abs/2501.18594v1
- Date: Thu, 30 Jan 2025 18:59:43 GMT
- Title: Foundational Models for 3D Point Clouds: A Survey and Outlook
- Authors: Vishal Thengane, Xiatian Zhu, Salim Bouzerdoum, Son Lam Phung, Yunpeng Li,
- Abstract summary: 3D point cloud representation plays a crucial role in preserving the geometric fidelity of the physical world.
To bridge this gap, it becomes essential to incorporate multiple modalities.
Foundation models (FMs) can seamlessly integrate and reason across these modalities.
- Score: 50.61473863985571
- License:
- Abstract: The 3D point cloud representation plays a crucial role in preserving the geometric fidelity of the physical world, enabling more accurate complex 3D environments. While humans naturally comprehend the intricate relationships between objects and variations through a multisensory system, artificial intelligence (AI) systems have yet to fully replicate this capacity. To bridge this gap, it becomes essential to incorporate multiple modalities. Models that can seamlessly integrate and reason across these modalities are known as foundation models (FMs). The development of FMs for 2D modalities, such as images and text, has seen significant progress, driven by the abundant availability of large-scale datasets. However, the 3D domain has lagged due to the scarcity of labelled data and high computational overheads. In response, recent research has begun to explore the potential of applying FMs to 3D tasks, overcoming these challenges by leveraging existing 2D knowledge. Additionally, language, with its capacity for abstract reasoning and description of the environment, offers a promising avenue for enhancing 3D understanding through large pre-trained language models (LLMs). Despite the rapid development and adoption of FMs for 3D vision tasks in recent years, there remains a gap in comprehensive and in-depth literature reviews. This article aims to address this gap by presenting a comprehensive overview of the state-of-the-art methods that utilize FMs for 3D visual understanding. We start by reviewing various strategies employed in the building of various 3D FMs. Then we categorize and summarize use of different FMs for tasks such as perception tasks. Finally, the article offers insights into future directions for research and development in this field. To help reader, we have curated list of relevant papers on the topic: https://github.com/vgthengane/Awesome-FMs-in-3D.
Related papers
- Diffusion Models in 3D Vision: A Survey [11.116658321394755]
We review the state-of-the-art approaches that leverage diffusion models for 3D visual tasks.
These approaches include 3D object generation, shape completion, point cloud reconstruction, and scene understanding.
We discuss potential solutions, including improving computational efficiency, enhancing multimodal fusion, and exploring the use of large-scale pretraining.
arXiv Detail & Related papers (2024-10-07T04:12:23Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
This paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan.
The resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks.
arXiv Detail & Related papers (2024-06-13T17:59:30Z) - When LLMs step into the 3D World: A Survey and Meta-Analysis of 3D Tasks via Multi-modal Large Language Models [113.18524940863841]
This survey provides a comprehensive overview of the methodologies enabling large language models to process, understand, and generate 3D data.
Our investigation spans various 3D data representations, from point clouds to Neural Radiance Fields (NeRFs)
It examines their integration with LLMs for tasks such as 3D scene understanding, captioning, question-answering, and dialogue.
arXiv Detail & Related papers (2024-05-16T16:59:58Z) - A Comprehensive Survey of 3D Dense Captioning: Localizing and Describing
Objects in 3D Scenes [80.20670062509723]
3D dense captioning is an emerging vision-language bridging task that aims to generate detailed descriptions for 3D scenes.
It presents significant potential and challenges due to its closer representation of the real world compared to 2D visual captioning.
Despite the popularity and success of existing methods, there is a lack of comprehensive surveys summarizing the advancements in this field.
arXiv Detail & Related papers (2024-03-12T10:04:08Z) - M3DBench: Let's Instruct Large Models with Multi-modal 3D Prompts [30.571811801090224]
We introduce a comprehensive 3D instructionfollowing dataset called M3DBench.
It supports general multimodal instructions interleaved with text, images, 3D objects, and other visual prompts.
It unifies diverse 3D tasks at both region and scene levels, covering a variety of fundamental abilities in real-world 3D environments.
arXiv Detail & Related papers (2023-12-17T16:53:30Z) - An Embodied Generalist Agent in 3D World [67.16935110789528]
We introduce LEO, an embodied multi-modal generalist agent that excels in perceiving, grounding, reasoning, planning, and acting in the 3D world.
We collect large-scale datasets comprising diverse object-level and scene-level tasks, which require considerable understanding of and interaction with the 3D world.
Through extensive experiments, we demonstrate LEO's remarkable proficiency across a wide spectrum of tasks, including 3D captioning, question answering, embodied reasoning, navigation and manipulation.
arXiv Detail & Related papers (2023-11-18T01:21:38Z) - Recent Advances in Multi-modal 3D Scene Understanding: A Comprehensive
Survey and Evaluation [28.417029383793068]
Multi-modal 3D scene understanding has gained considerable attention due to its wide applications in many areas, such as autonomous driving and human-computer interaction.
introducing an additional modality not only elevates the richness and precision of scene interpretation but also ensures a more robust and resilient understanding.
We present a novel taxonomy that delivers a thorough categorization of existing methods according to modalities and tasks, exploring their respective strengths and limitations.
arXiv Detail & Related papers (2023-10-24T09:39:05Z) - Deep Generative Models on 3D Representations: A Survey [81.73385191402419]
Generative models aim to learn the distribution of observed data by generating new instances.
Recently, researchers started to shift focus from 2D to 3D space.
representing 3D data poses significantly greater challenges.
arXiv Detail & Related papers (2022-10-27T17:59:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.