Membership Inference Attacks Against Vision-Language Models
- URL: http://arxiv.org/abs/2501.18624v2
- Date: Fri, 07 Feb 2025 05:11:54 GMT
- Title: Membership Inference Attacks Against Vision-Language Models
- Authors: Yuke Hu, Zheng Li, Zhihao Liu, Yang Zhang, Zhan Qin, Kui Ren, Chun Chen,
- Abstract summary: Vision-Language Models (VLMs) have shown exceptional multi-modal understanding and dialog capabilities.
Risks of data misuse and leakage have been largely unexplored.
We propose four membership inference methods, each tailored to different levels of background knowledge.
- Score: 24.47069867575367
- License:
- Abstract: Vision-Language Models (VLMs), built on pre-trained vision encoders and large language models (LLMs), have shown exceptional multi-modal understanding and dialog capabilities, positioning them as catalysts for the next technological revolution. However, while most VLM research focuses on enhancing multi-modal interaction, the risks of data misuse and leakage have been largely unexplored. This prompts the need for a comprehensive investigation of such risks in VLMs. In this paper, we conduct the first analysis of misuse and leakage detection in VLMs through the lens of membership inference attack (MIA). In specific, we focus on the instruction tuning data of VLMs, which is more likely to contain sensitive or unauthorized information. To address the limitation of existing MIA methods, we introduce a novel approach that infers membership based on a set of samples and their sensitivity to temperature, a unique parameter in VLMs. Based on this, we propose four membership inference methods, each tailored to different levels of background knowledge, ultimately arriving at the most challenging scenario. Our comprehensive evaluations show that these methods can accurately determine membership status, e.g., achieving an AUC greater than 0.8 targeting a small set consisting of only 5 samples on LLaVA.
Related papers
- When Data Manipulation Meets Attack Goals: An In-depth Survey of Attacks for VLMs [15.74045364570382]
We present an in-depth survey of the attack strategies tailored for Vision-Language Models (VLMs)
We categorize these attacks based on their underlying objectives.
We outline corresponding defense mechanisms that have been proposed to mitigate these vulnerabilities.
arXiv Detail & Related papers (2025-02-10T12:20:08Z) - Membership Inference Attack against Long-Context Large Language Models [8.788010048413188]
We argue that integrating all information into the long context makes it a repository of sensitive information.
We propose six membership inference attack strategies tailored for LCLMs.
We examine the underlying reasons why LCLMs are susceptible to revealing such membership information.
arXiv Detail & Related papers (2024-11-18T09:50:54Z) - Membership Inference Attacks against Large Vision-Language Models [40.996912464828696]
Large vision-language models (VLLMs) exhibit promising capabilities for processing multi-modal tasks across various application scenarios.
Their emergence also raises significant data security concerns, given the potential inclusion of sensitive information, such as private photos and medical records.
Detecting inappropriately used data in VLLMs remains a critical and unresolved issue.
arXiv Detail & Related papers (2024-11-05T08:35:08Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
Large language models (LLMs) generate content that can undermine trust in online discourse.
Current methods often focus on binary classification, failing to address the complexities of real-world scenarios like human-LLM collaboration.
To move beyond binary classification and address these challenges, we propose a new paradigm for detecting LLM-generated content.
arXiv Detail & Related papers (2024-10-18T08:14:10Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
This paper investigates the role of the Large Language Model (LLM) backbone in Multimodal Large Language Models (MLLMs) evaluation.
Our study encompasses four diverse MLLM benchmarks and eight state-of-the-art MLLMs.
Key findings reveal that some benchmarks allow high performance even without visual inputs and up to 50% of error rates can be attributed to insufficient world knowledge in the LLM backbone.
arXiv Detail & Related papers (2024-10-16T07:49:13Z) - Insight Over Sight? Exploring the Vision-Knowledge Conflicts in Multimodal LLMs [55.74117540987519]
This paper explores the problem of commonsense-level vision-knowledge conflict in Multimodal Large Language Models (MLLMs)
We introduce an automated pipeline, augmented with human-in-the-loop quality control, to establish a benchmark aimed at simulating and assessing the conflicts in MLLMs.
We evaluate the conflict-resolution capabilities of nine representative MLLMs across various model families and find a noticeable over-reliance on textual queries.
arXiv Detail & Related papers (2024-10-10T17:31:17Z) - MarvelOVD: Marrying Object Recognition and Vision-Language Models for Robust Open-Vocabulary Object Detection [107.15164718585666]
We investigate the root cause of VLMs' biased prediction under the open vocabulary detection context.
Our observations lead to a simple yet effective paradigm, coded MarvelOVD, that generates significantly better training targets.
Our method outperforms the other state-of-the-arts by significant margins.
arXiv Detail & Related papers (2024-07-31T09:23:57Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding and reasoning tasks.
The vulnerability of LVLMs is relatively underexplored, posing potential security risks in daily usage.
In this paper, we provide a comprehensive review of the various forms of existing LVLM attacks.
arXiv Detail & Related papers (2024-07-10T06:57:58Z) - An Empirical Study of Automated Vulnerability Localization with Large Language Models [21.84971967029474]
Large Language Models (LLMs) have shown potential in various domains, yet their effectiveness in vulnerability localization remains underexplored.
Our investigation encompasses 10+ leading LLMs suitable for code analysis, including ChatGPT and various open-source models.
We explore the efficacy of these LLMs using 4 distinct paradigms: zero-shot learning, one-shot learning, discriminative fine-tuning, and generative fine-tuning.
arXiv Detail & Related papers (2024-03-30T08:42:10Z) - On Evaluating Adversarial Robustness of Large Vision-Language Models [64.66104342002882]
We evaluate the robustness of large vision-language models (VLMs) in the most realistic and high-risk setting.
In particular, we first craft targeted adversarial examples against pretrained models such as CLIP and BLIP.
Black-box queries on these VLMs can further improve the effectiveness of targeted evasion.
arXiv Detail & Related papers (2023-05-26T13:49:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.