Image Velocimetry using Direct Displacement Field estimation with Neural Networks for Fluids
- URL: http://arxiv.org/abs/2501.18641v1
- Date: Tue, 28 Jan 2025 20:40:15 GMT
- Title: Image Velocimetry using Direct Displacement Field estimation with Neural Networks for Fluids
- Authors: Efraín Magaña, Francisco Sahli Costabal, Wernher Brevis,
- Abstract summary: This work presents a novel approach for estimating fluid flow fields using neural networks and the optical flow equation.
The methodology was validated on synthetic and experimental images.
- Score: 0.0
- License:
- Abstract: An important tool for experimental fluids mechanics research is Particle Image Velocimetry (PIV). Several robust methodologies have been proposed to perform the estimation of velocity field from the images, however, alternative methods are still needed to increase the spatial resolution of the results. This work presents a novel approach for estimating fluid flow fields using neural networks and the optical flow equation to predict displacement vectors between sequential images. The result is a continuous representation of the displacement, that can be evaluated on the full spatial resolution of the image. The methodology was validated on synthetic and experimental images. Accurate results were obtained in terms of the estimation of instantaneous velocity fields, and of the determined time average turbulence quantities and power spectral density. The methodology proposed differs of previous attempts of using machine learning for this task: it does not require any previous training, and could be directly used in any pair of images.
Related papers
- ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - Vision-Informed Flow Image Super-Resolution with Quaternion Spatial
Modeling and Dynamic Flow Convolution [49.45309818782329]
Flow image super-resolution (FISR) aims at recovering high-resolution turbulent velocity fields from low-resolution flow images.
Existing FISR methods mainly process the flow images in natural image patterns.
We propose the first flow visual property-informed FISR algorithm.
arXiv Detail & Related papers (2024-01-29T06:48:16Z) - Neural Sinkhorn Gradient Flow [11.4522103360875]
We introduce the Neural Sinkhorn Gradient Flow (NSGF) model, which parametrizes the time-varying velocity field of the Wasserstein gradient flow.
Our theoretical analyses show that as the sample size increases to infinity, the mean-field limit of the empirical approximation converges to the true underlying velocity field.
To further enhance model efficiency on high-dimensional tasks, a two-phase NSGF++ model is devised.
arXiv Detail & Related papers (2024-01-25T10:44:50Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
We apply a state-of-the-art operator learning technique to forecast the temporal evolution of experimentally measured velocity fields.
We find that FNOs are capable of accurately predicting the evolution of experimental velocity fields throughout the range of Reynolds numbers tested.
arXiv Detail & Related papers (2023-01-19T20:04:36Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Learning to Estimate and Refine Fluid Motion with Physical Dynamics [9.258258917049845]
We propose an unsupervised learning based prediction-correction scheme for fluid flow estimation.
An estimate is first given by a PDE-constrained optical flow predictor, which is then refined by a physical based corrector.
The proposed approach can generalize to complex real-world fluid scenarios where ground truth information is effectively unknowable.
arXiv Detail & Related papers (2022-06-21T15:46:49Z) - A robust single-pixel particle image velocimetry based on fully
convolutional networks with cross-correlation embedded [3.3579727024861064]
We propose a new velocity field estimation paradigm, which achieves a synergetic combination of the deep learning method and the traditional cross-correlation method.
The deep learning method is used to optimize and correct a coarse velocity guess to achieve a super-resolution calculation.
As a reference, the coarse velocity guess helps with improving the robustness of the proposed algorithm.
arXiv Detail & Related papers (2021-10-31T03:26:08Z) - Estimating Nonplanar Flow from 2D Motion-blurred Widefield Microscopy
Images via Deep Learning [7.6146285961466]
We present a method to predict, from a single textured wide-field microscopy image, the movement of out-of-plane particles using the local characteristics of the motion blur.
This method could enable microscopists to gain insights about the dynamic properties of samples without the need for high-speed cameras or high-intensity light exposure.
arXiv Detail & Related papers (2021-02-14T19:44:28Z) - Neural Particle Image Velocimetry [4.416484585765027]
We introduce a convolutional neural network adapted to the problem, namely Volumetric Correspondence Network (VCN)
The network is thoroughly trained and tested on a dataset containing both synthetic and real flow data.
Our analysis indicates that the proposed approach provides improved efficiency also keeping accuracy on par with other state-of-the-art methods in the field.
arXiv Detail & Related papers (2021-01-28T12:03:39Z) - End-to-end Learning for Inter-Vehicle Distance and Relative Velocity
Estimation in ADAS with a Monocular Camera [81.66569124029313]
We propose a camera-based inter-vehicle distance and relative velocity estimation method based on end-to-end training of a deep neural network.
The key novelty of our method is the integration of multiple visual clues provided by any two time-consecutive monocular frames.
We also propose a vehicle-centric sampling mechanism to alleviate the effect of perspective distortion in the motion field.
arXiv Detail & Related papers (2020-06-07T08:18:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.