Learning to Estimate and Refine Fluid Motion with Physical Dynamics
- URL: http://arxiv.org/abs/2206.10480v2
- Date: Wed, 22 Jun 2022 09:01:04 GMT
- Title: Learning to Estimate and Refine Fluid Motion with Physical Dynamics
- Authors: Mingrui Zhang and Jianhong Wang and James Tlhomole and Matthew D.
Piggott
- Abstract summary: We propose an unsupervised learning based prediction-correction scheme for fluid flow estimation.
An estimate is first given by a PDE-constrained optical flow predictor, which is then refined by a physical based corrector.
The proposed approach can generalize to complex real-world fluid scenarios where ground truth information is effectively unknowable.
- Score: 9.258258917049845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracting information on fluid motion directly from images is challenging.
Fluid flow represents a complex dynamic system governed by the Navier-Stokes
equations. General optical flow methods are typically designed for rigid body
motion, and thus struggle if applied to fluid motion estimation directly.
Further, optical flow methods only focus on two consecutive frames without
utilising historical temporal information, while the fluid motion (velocity
field) can be considered a continuous trajectory constrained by time-dependent
partial differential equations (PDEs). This discrepancy has the potential to
induce physically inconsistent estimations. Here we propose an unsupervised
learning based prediction-correction scheme for fluid flow estimation. An
estimate is first given by a PDE-constrained optical flow predictor, which is
then refined by a physical based corrector. The proposed approach outperforms
optical flow methods and shows competitive results compared to existing
supervised learning based methods on a benchmark dataset. Furthermore, the
proposed approach can generalize to complex real-world fluid scenarios where
ground truth information is effectively unknowable. Finally, experiments
demonstrate that the physical corrector can refine flow estimates by mimicking
the operator splitting method commonly utilised in fluid dynamical simulation.
Related papers
- FlowDAS: A Flow-Based Framework for Data Assimilation [15.64941169350615]
FlowDAS is a novel generative model-based framework using the interpolants to unify the learning of state transition dynamics and generative priors.
Our experiments demonstrate FlowDAS's superior performance on various benchmarks, from the Lorenz system to high-dimensional fluid superresolution tasks.
arXiv Detail & Related papers (2025-01-13T05:03:41Z) - A Variational Computational-based Framework for Unsteady Incompressible Flows [0.0]
We propose an alternative computational framework that employs variational methods to solve fluid mechanics problems.
First, it circumvents the chronic issues of pressure-velocity coupling in incompressible flows.
Second, this method eliminates the reliance on unphysical assumptions at the outflow boundary.
arXiv Detail & Related papers (2024-12-07T03:45:39Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Motion-prior Contrast Maximization for Dense Continuous-Time Motion Estimation [34.529280562470746]
We introduce a novel self-supervised loss combining the Contrast Maximization framework with a non-linear motion prior in the form of pixel-level trajectories.
Their effectiveness is demonstrated in two scenarios: In dense continuous-time motion estimation, our method improves the zero-shot performance of a synthetically trained model by 29%.
arXiv Detail & Related papers (2024-07-15T15:18:28Z) - Vision-Informed Flow Image Super-Resolution with Quaternion Spatial
Modeling and Dynamic Flow Convolution [49.45309818782329]
Flow image super-resolution (FISR) aims at recovering high-resolution turbulent velocity fields from low-resolution flow images.
Existing FISR methods mainly process the flow images in natural image patterns.
We propose the first flow visual property-informed FISR algorithm.
arXiv Detail & Related papers (2024-01-29T06:48:16Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
We apply a state-of-the-art operator learning technique to forecast the temporal evolution of experimentally measured velocity fields.
We find that FNOs are capable of accurately predicting the evolution of experimental velocity fields throughout the range of Reynolds numbers tested.
arXiv Detail & Related papers (2023-01-19T20:04:36Z) - NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural
Radiance Fields [65.07940731309856]
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids.
In this paper, we consider a partially observable scenario known as fluid dynamics grounding.
We propose a differentiable two-stage network named NeuroFluid.
It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities.
arXiv Detail & Related papers (2022-03-03T15:13:29Z) - Sensor-Guided Optical Flow [53.295332513139925]
This paper proposes a framework to guide an optical flow network with external cues to achieve superior accuracy on known or unseen domains.
We show how these can be obtained by combining depth measurements from active sensors with geometry and hand-crafted optical flow algorithms.
arXiv Detail & Related papers (2021-09-30T17:59:57Z) - Unsupervised Motion Representation Enhanced Network for Action
Recognition [4.42249337449125]
Motion representation between consecutive frames has proven to have great promotion to video understanding.
TV-L1 method, an effective optical flow solver, is time-consuming and expensive in storage for caching the extracted optical flow.
We propose UF-TSN, a novel end-to-end action recognition approach enhanced with an embedded lightweight unsupervised optical flow estimator.
arXiv Detail & Related papers (2021-03-05T04:14:32Z) - A Framework for Fluid Motion Estimation using a Constraint-Based
Refinement Approach [0.0]
We formulate a general framework for fluid motion estimation using a constraint-based refinement approach.
We demonstrate that for a particular choice of constraint, our results closely approximate the classical continuity equation-based method for fluid flow.
We also observe a surprising connection to the Cauchy-Riemann operator that diagonalizes the system leading to a diffusive phenomenon involving the divergence and the curl of the flow.
arXiv Detail & Related papers (2020-11-24T18:23:39Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
We propose a novel numerical scheme to optimize the gradient flows for learning energy-based models (EBMs)
We derive a second-order Wasserstein gradient flow of the global relative entropy from Fokker-Planck equation.
Compared with existing schemes, Wasserstein gradient flow is a smoother and near-optimal numerical scheme to approximate real data densities.
arXiv Detail & Related papers (2019-10-31T02:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.