SAFL: Structure-Aware Personalized Federated Learning via Client-Specific Clustering and SCSI-Guided Model Pruning
- URL: http://arxiv.org/abs/2501.18659v1
- Date: Thu, 30 Jan 2025 08:59:44 GMT
- Title: SAFL: Structure-Aware Personalized Federated Learning via Client-Specific Clustering and SCSI-Guided Model Pruning
- Authors: Nan Li, Xiaolu Wang, Xiao Du, Puyu Cai, Ting Wang,
- Abstract summary: Federated Learning (FL) enables clients to collaboratively train machine learning models without sharing local data, preserving privacy in diverse environments.
This paper introduces SAFL (Structure-Aware Federated Learning), a novel framework that enhances personalized federated learning through client-specific clustering and Similar Client Structure Information (SCSI)-guided model pruning.
- Score: 11.0839911783691
- License:
- Abstract: Federated Learning (FL) enables clients to collaboratively train machine learning models without sharing local data, preserving privacy in diverse environments. While traditional FL approaches preserve privacy, they often struggle with high computational and communication overhead. To address these issues, model pruning is introduced as a strategy to streamline computations. However, existing pruning methods, when applied solely based on local data, often produce sub-models that inadequately reflect clients' specific tasks due to data insufficiency. To overcome these challenges, this paper introduces SAFL (Structure-Aware Federated Learning), a novel framework that enhances personalized federated learning through client-specific clustering and Similar Client Structure Information (SCSI)-guided model pruning. SAFL employs a two-stage process: initially, it groups clients based on data similarities and uses aggregated pruning criteria to guide the pruning process, facilitating the identification of optimal sub-models. Subsequently, clients train these pruned models and engage in server-based aggregation, ensuring tailored and efficient models for each client. This method significantly reduces computational overhead while improving inference accuracy. Extensive experiments demonstrate that SAFL markedly diminishes model size and improves performance, making it highly effective in federated environments characterized by heterogeneous data.
Related papers
- Optimal Strategies for Federated Learning Maintaining Client Privacy [8.518748080337838]
This paper studies the tradeoff between model performance and communication of the Federated Learning system.
We show that training for one local epoch per global round of training gives optimal performance while preserving the same privacy budget.
arXiv Detail & Related papers (2025-01-24T12:34:38Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.
We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - FedClust: Tackling Data Heterogeneity in Federated Learning through Weight-Driven Client Clustering [26.478852701376294]
Federated learning (FL) is an emerging distributed machine learning paradigm.
One of the major challenges in FL is the presence of uneven data distributions across client devices.
We propose em FedClust, a novel approach for CFL that leverages the correlation between local model weights and the data distribution of clients.
arXiv Detail & Related papers (2024-07-09T02:47:16Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Personalized Federated Learning via Sequential Layer Expansion in Representation Learning [0.0]
Federated learning ensures the privacy of clients by conducting distributed training on individual client devices and sharing only the model weights with a central server.
We propose a new representation learning-based approach that suggests decoupling the entire deep learning model into more densely divided parts with the application of suitable scheduling methods.
arXiv Detail & Related papers (2024-04-27T06:37:19Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
Federated learning (FL) enables distributed clients to collaboratively train a global model while preserving their data privacy.
We propose contrastive pre-training-based clustered federated learning (CP-CFL) to improve the model convergence and overall performance of FL systems.
arXiv Detail & Related papers (2023-11-28T05:44:26Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - Personalized Federated Learning by Structured and Unstructured Pruning
under Data Heterogeneity [3.291862617649511]
We propose a new approach for obtaining a personalized model from a client-level objective.
To realize this personalization, we leverage finding a small subnetwork for each client.
arXiv Detail & Related papers (2021-05-02T22:10:46Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z) - Federated Residual Learning [53.77128418049985]
We study a new form of federated learning where the clients train personalized local models and make predictions jointly with the server-side shared model.
Using this new federated learning framework, the complexity of the central shared model can be minimized while still gaining all the performance benefits that joint training provides.
arXiv Detail & Related papers (2020-03-28T19:55:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.