Neural Graph Pattern Machine
- URL: http://arxiv.org/abs/2501.18739v1
- Date: Thu, 30 Jan 2025 20:37:47 GMT
- Title: Neural Graph Pattern Machine
- Authors: Zehong Wang, Zheyuan Zhang, Tianyi Ma, Nitesh V Chawla, Chuxu Zhang, Yanfang Ye,
- Abstract summary: We propose the Neural Graph Pattern Machine (GPM), a framework designed to learn directly from graph patterns.
GPM efficiently extracts and encodes substructures while identifying the most relevant ones for downstream tasks.
- Score: 50.78679002846741
- License:
- Abstract: Graph learning tasks require models to comprehend essential substructure patterns relevant to downstream tasks, such as triadic closures in social networks and benzene rings in molecular graphs. Due to the non-Euclidean nature of graphs, existing graph neural networks (GNNs) rely on message passing to iteratively aggregate information from local neighborhoods. Despite their empirical success, message passing struggles to identify fundamental substructures, such as triangles, limiting its expressiveness. To overcome this limitation, we propose the Neural Graph Pattern Machine (GPM), a framework designed to learn directly from graph patterns. GPM efficiently extracts and encodes substructures while identifying the most relevant ones for downstream tasks. We also demonstrate that GPM offers superior expressivity and improved long-range information modeling compared to message passing. Empirical evaluations on node classification, link prediction, graph classification, and regression show the superiority of GPM over state-of-the-art baselines. Further analysis reveals its desirable out-of-distribution robustness, scalability, and interpretability. We consider GPM to be a step toward going beyond message passing.
Related papers
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)
This framework provides a standardized setting to evaluate GNNs across diverse datasets.
We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - Line Graph Vietoris-Rips Persistence Diagram for Topological Graph Representation Learning [3.6881508872690825]
We introduce a novel edge filtration-based persistence diagram, named Topological Edge Diagram (TED)
TED is mathematically proven to preserve node embedding information as well as contain additional topological information.
We propose a neural network based algorithm, named Line Graph Vietoris-Rips (LGVR) Persistence Diagram, that extracts edge information by transforming a graph into its line graph.
arXiv Detail & Related papers (2024-12-23T10:46:44Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
Graph neural networks (GNNs) have revolutionized the field of machine learning on non-Euclidean data such as graphs and networks.
We propose a concatenation-based graph convolution mechanism that injectively updates node representations.
We also design a novel graph pooling module, called WL-SortPool, to learn important subgraph patterns in a deep-learning manner.
arXiv Detail & Related papers (2024-04-21T13:11:59Z) - Expander Graph Propagation [0.0]
We propose an elegant approach based on propagating information over expander graphs.
We show that EGP is able to address all of the above concerns, while requiring minimal effort to set up.
We believe our analysis paves the way to a novel class of scalable methods to counter oversquashing in GNNs.
arXiv Detail & Related papers (2022-10-06T15:36:37Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Motif-based Graph Self-Supervised Learning forMolecular Property
Prediction [12.789013658551454]
Graph Neural Networks (GNNs) have demonstrated remarkable success in various molecular generation and prediction tasks.
Most existing self-supervised pre-training frameworks for GNNs only focus on node-level or graph-level tasks.
We propose a novel self-supervised motif generation framework for GNNs.
arXiv Detail & Related papers (2021-10-03T11:45:51Z) - Graph Information Bottleneck [77.21967740646784]
Graph Neural Networks (GNNs) provide an expressive way to fuse information from network structure and node features.
Inheriting from the general Information Bottleneck (IB), GIB aims to learn the minimal sufficient representation for a given task.
We show that our proposed models are more robust than state-of-the-art graph defense models.
arXiv Detail & Related papers (2020-10-24T07:13:00Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
"Graph Substructure Networks" (GSN) is a topologically-aware message passing scheme based on substructure encoding.
We show that it is strictly more expressive than the Weisfeiler-Leman (WL) graph isomorphism test.
We perform an extensive evaluation on graph classification and regression tasks and obtain state-of-the-art results in diverse real-world settings.
arXiv Detail & Related papers (2020-06-16T15:30:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.