Navigating the Fragrance space Via Graph Generative Models And Predicting Odors
- URL: http://arxiv.org/abs/2501.18777v1
- Date: Thu, 30 Jan 2025 22:00:23 GMT
- Title: Navigating the Fragrance space Via Graph Generative Models And Predicting Odors
- Authors: Mrityunjay Sharma, Sarabeshwar Balaji, Pinaki Saha, Ritesh Kumar,
- Abstract summary: We explore a suite of generative modelling techniques to efficiently navigate and explore the complex landscapes of odor and the broader chemical space.
Unlike traditional approaches, we not only generate molecules but also predict the odor likeliness with ROC AUC score of 0.97 and assign probable odor labels.
- Score: 0.2749898166276853
- License:
- Abstract: We explore a suite of generative modelling techniques to efficiently navigate and explore the complex landscapes of odor and the broader chemical space. Unlike traditional approaches, we not only generate molecules but also predict the odor likeliness with ROC AUC score of 0.97 and assign probable odor labels. We correlate odor likeliness with physicochemical features of molecules using machine learning techniques and leverage SHAP (SHapley Additive exPlanations) to demonstrate the interpretability of the function. The whole process involves four key stages: molecule generation, stringent sanitization checks for molecular validity, fragrance likeliness screening and odor prediction of the generated molecules. By making our code and trained models publicly accessible, we aim to facilitate broader adoption of our research across applications in fragrance discovery and olfactory research.
Related papers
- Diffusion Models for Molecules: A Survey of Methods and Tasks [56.44565051667812]
Generative tasks about molecules are crucial for drug discovery and material design.
Diffusion models have emerged as an impressive class of deep generative models.
This paper conducts a comprehensive survey of diffusion model-based molecular generative methods.
arXiv Detail & Related papers (2025-02-13T17:22:50Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Molecule Generation and Optimization for Efficient Fragrance Creation [0.0]
This research introduces a Machine Learning-centric approach to replicate olfactory experiences.
Key contributions encompass a hybrid model connecting perfume molecular structure to human olfactory perception.
The methodology is validated by reproducing two distinct olfactory experiences using available experimental data.
arXiv Detail & Related papers (2024-02-19T13:32:30Z) - Olfactory Label Prediction on Aroma-Chemical Pairs [0.2749898166276853]
We present graph neural network models capable of accurately predicting the odor qualities arising from blends of aroma-chemicals.
In this paper, we apply both existing and novel approaches to a dataset we gathered consisting of labeled pairs of molecules.
arXiv Detail & Related papers (2023-12-26T17:18:09Z) - Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design [82.23006955069229]
We propose DiffLinker, an E(3)-equivariant 3D-conditional diffusion model for molecular linker design.
Our model places missing atoms in between and designs a molecule incorporating all the initial fragments.
We demonstrate that DiffLinker outperforms other methods on the standard datasets generating more diverse and synthetically-accessible molecules.
arXiv Detail & Related papers (2022-10-11T09:13:37Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
We propose a score-based diffusion scheme that incorporates out-of-distribution control in the generative differential equation (SDE)
Since some novel molecules may not meet the basic requirements of real-world drugs, MOOD performs conditional generation by utilizing the gradients from a property predictor.
We experimentally validate that MOOD is able to explore the chemical space beyond the training distribution, generating molecules that outscore ones found with existing methods, and even the top 0.01% of the original training pool.
arXiv Detail & Related papers (2022-06-06T06:17:11Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
We introduce a novel framework for scalable 3D design that uses a hierarchical agent to build molecules.
In a variety of experiments, we show that our agent, guided only by energy considerations, can efficiently learn to produce molecules with over 100 atoms.
arXiv Detail & Related papers (2022-02-01T18:54:24Z) - ChemoVerse: Manifold traversal of latent spaces for novel molecule
discovery [0.7742297876120561]
It is essential to identify molecular structures with the desired chemical properties.
Recent advances in generative models using neural networks and machine learning are being widely used to design virtual libraries of drug-like compounds.
arXiv Detail & Related papers (2020-09-29T12:11:40Z) - Reinforcement Learning for Molecular Design Guided by Quantum Mechanics [10.112779201155005]
We present a novel RL formulation for molecular design in coordinates, thereby extending the class of molecules that can be built.
Our reward function is directly based on fundamental physical properties such as the energy, which we approximate via fast quantum-chemical methods.
In our experiments, we show that our agent can efficiently learn to solve these tasks from scratch by working in a translation and rotation invariant state-action space.
arXiv Detail & Related papers (2020-02-18T16:43:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.