Diffusion Models for Molecules: A Survey of Methods and Tasks
- URL: http://arxiv.org/abs/2502.09511v1
- Date: Thu, 13 Feb 2025 17:22:50 GMT
- Title: Diffusion Models for Molecules: A Survey of Methods and Tasks
- Authors: Liang Wang, Chao Song, Zhiyuan Liu, Yu Rong, Qiang Liu, Shu Wu, Liang Wang,
- Abstract summary: Generative tasks about molecules are crucial for drug discovery and material design.
Diffusion models have emerged as an impressive class of deep generative models.
This paper conducts a comprehensive survey of diffusion model-based molecular generative methods.
- Score: 56.44565051667812
- License:
- Abstract: Generative tasks about molecules, including but not limited to molecule generation, are crucial for drug discovery and material design, and have consistently attracted significant attention. In recent years, diffusion models have emerged as an impressive class of deep generative models, sparking extensive research and leading to numerous studies on their application to molecular generative tasks. Despite the proliferation of related work, there remains a notable lack of up-to-date and systematic surveys in this area. Particularly, due to the diversity of diffusion model formulations, molecular data modalities, and generative task types, the research landscape is challenging to navigate, hindering understanding and limiting the area's growth. To address this, this paper conducts a comprehensive survey of diffusion model-based molecular generative methods. We systematically review the research from the perspectives of methodological formulations, data modalities, and task types, offering a novel taxonomy. This survey aims to facilitate understanding and further flourishing development in this area. The relevant papers are summarized at: https://github.com/AzureLeon1/awesome-molecular-diffusion-models.
Related papers
- MolMiner: Transformer architecture for fragment-based autoregressive generation of molecular stories [7.366789601705544]
Chemical validity, interpretability of the generation process and flexibility to variable molecular sizes are among some of the remaining challenges for generative models in computational materials design.
We propose an autoregressive approach that decomposes molecular generation into a sequence of discrete and interpretable steps.
Our results show that the model can effectively bias the generation distribution according to the prompted multi-target objective.
arXiv Detail & Related papers (2024-11-10T22:00:55Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Diffusion Models in $\textit{De Novo}$ Drug Design [0.0]
Diffusion models have emerged as powerful tools for molecular generation, particularly in the context of 3D molecular structures.
This review focuses on the technical implementation of diffusion models tailored for 3D molecular generation.
arXiv Detail & Related papers (2024-06-07T06:34:13Z) - Sifting through the Noise: A Survey of Diffusion Probabilistic Models and Their Applications to Biomolecules [0.7366405857677227]
Diffusion probabilistic models have made their way into a number of high-profile applications.
This paper serves as a general overview for the theory behind these models and the current state of research.
arXiv Detail & Related papers (2024-05-31T21:39:51Z) - LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
We present a novel latent diffusion model dubbed LDMol for text-conditioned molecule generation.
LDMol comprises a molecule autoencoder that produces a learnable and structurally informative feature space.
We show that LDMol can be applied to downstream tasks such as molecule-to-text retrieval and text-guided molecule editing.
arXiv Detail & Related papers (2024-05-28T04:59:13Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z) - Interpretable Molecular Graph Generation via Monotonic Constraints [19.401468196146336]
Deep graph generative models treat molecule design as graph generation problems.
Existing models have many shortcomings, including poor interpretability and controllability toward desired molecular properties.
This paper proposes new methodologies for molecule generation with interpretable and deep controllable models.
arXiv Detail & Related papers (2022-02-28T08:35:56Z) - Knowledge-informed Molecular Learning: A Survey on Paradigm Transfer [20.893861195128643]
Machine learning, notably deep learning, has significantly propelled molecular investigations within the biochemical sphere.
Traditionally, modeling for such research has centered around a handful of paradigms.
To enhance the generation and decipherability of purely data-driven models, scholars have integrated biochemical domain knowledge into these molecular study models.
arXiv Detail & Related papers (2022-02-17T06:18:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.