Memory-Efficient Fine-Tuning of Transformers via Token Selection
- URL: http://arxiv.org/abs/2501.18824v1
- Date: Fri, 31 Jan 2025 00:43:50 GMT
- Title: Memory-Efficient Fine-Tuning of Transformers via Token Selection
- Authors: Antoine Simoulin, Namyong Park, Xiaoyi Liu, Grey Yang,
- Abstract summary: TokenTune is a method to reduce memory usage, specifically the memory to store intermediate activations.
We evaluate our approach on pre-trained transformer models with up to billions of parameters.
- Score: 8.040237969671942
- License:
- Abstract: Fine-tuning provides an effective means to specialize pre-trained models for various downstream tasks. However, fine-tuning often incurs high memory overhead, especially for large transformer-based models, such as LLMs. While existing methods may reduce certain parts of the memory required for fine-tuning, they still require caching all intermediate activations computed in the forward pass to update weights during the backward pass. In this work, we develop TokenTune, a method to reduce memory usage, specifically the memory to store intermediate activations, in the fine-tuning of transformer-based models. During the backward pass, TokenTune approximates the gradient computation by backpropagating through just a subset of input tokens. Thus, with TokenTune, only a subset of intermediate activations are cached during the forward pass. Also, TokenTune can be easily combined with existing methods like LoRA, further reducing the memory cost. We evaluate our approach on pre-trained transformer models with up to billions of parameters, considering the performance on multiple downstream tasks such as text classification and question answering in a few-shot learning setup. Overall, TokenTune achieves performance on par with full fine-tuning or representative memory-efficient fine-tuning methods, while greatly reducing the memory footprint, especially when combined with other methods with complementary memory reduction mechanisms. We hope that our approach will facilitate the fine-tuning of large transformers, in specializing them for specific domains or co-training them with other neural components from a larger system. Our code is available at https://github.com/facebookresearch/tokentune.
Related papers
- SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections [35.133698935322634]
Large language models (LLMs) have recently emerged as powerful tools for tackling many language-processing tasks.
We identify and characterise the important components needed for effective model convergence using gradient descent.
This result leads us to a cheap and memory-efficient algorithm for both fine-tuning and pre-training LLMs.
arXiv Detail & Related papers (2024-05-28T09:23:14Z) - Time-, Memory- and Parameter-Efficient Visual Adaptation [75.28557015773217]
We propose an adaptation method which does not backpropagate gradients through the backbone.
We achieve this by designing a lightweight network in parallel that operates on features from the frozen, pretrained backbone.
arXiv Detail & Related papers (2024-02-05T10:55:47Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
We propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance.
Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones.
arXiv Detail & Related papers (2023-05-24T15:52:08Z) - Token Turing Machines [53.22971546637947]
Token Turing Machines (TTM) is a sequential, autoregressive Transformer model with memory for real-world sequential visual understanding.
Our model is inspired by the seminal Neural Turing Machine, and has an external memory consisting of a set of tokens which summarise the previous history.
arXiv Detail & Related papers (2022-11-16T18:59:18Z) - Recurrent Memory Transformer [0.3529736140137003]
We study a memory-augmented segment-level recurrent Transformer (Recurrent Memory Transformer)
We implement a memory mechanism with no changes to Transformer model by adding special memory tokens to the input or output sequence.
Our model performs on par with the Transformer-XL on language modeling for smaller memory sizes and outperforms it for tasks that require longer sequence processing.
arXiv Detail & Related papers (2022-07-14T13:00:22Z) - LST: Ladder Side-Tuning for Parameter and Memory Efficient Transfer
Learning [82.93130407930762]
It is costly to update the entire parameter set of large pre-trained models.
PETL techniques allow updating a small subset of parameters inside a pre-trained backbone network for a new task.
We propose Ladder Side-Tuning (LST), a new PETL technique that reduces training memory requirements by more substantial amounts.
arXiv Detail & Related papers (2022-06-13T23:51:56Z) - Fine-tuning Image Transformers using Learnable Memory [14.478892724736404]
We propose augmenting Vision Transformer models with learnable memory tokens.
Our approach allows the model to adapt to new tasks, using few parameters.
We show that augmenting a model with just a handful of such tokens per layer significantly improves accuracy.
arXiv Detail & Related papers (2022-03-29T05:26:20Z) - Mesa: A Memory-saving Training Framework for Transformers [58.78933015299703]
We present Mesa, a memory-saving training framework for Transformers.
Mesa uses exact activations during forward pass while storing a low-precision version of activations to reduce memory consumption during training.
Experiments on ImageNet, CIFAR-100 and ADE20K demonstrate that Mesa can reduce half of the memory footprints during training.
arXiv Detail & Related papers (2021-11-22T11:23:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.