論文の概要: FlexiCrackNet: A Flexible Pipeline for Enhanced Crack Segmentation with General Features Transfered from SAM
- arxiv url: http://arxiv.org/abs/2501.18855v1
- Date: Fri, 31 Jan 2025 02:37:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:01:59.386443
- Title: FlexiCrackNet: A Flexible Pipeline for Enhanced Crack Segmentation with General Features Transfered from SAM
- Title(参考訳): FlexiCrackNet:SAMから移行した一般的な機能を備えた拡張クラックセグメンテーションのためのフレキシブルパイプライン
- Authors: Xinlong Wan, Xiaoyan Jiang, Guangsheng Luo, Ferdous Sohel, Jenqneng Hwang,
- Abstract要約: FlexiCrackNetは、従来のディープラーニングパラダイムを大規模な事前学習モデルの強みとシームレスに統合する、新しいパイプラインである。
実験の結果、FlexiCrackNetは最先端の手法より優れ、ゼロショットの一般化、計算効率、セグメンテーションの堅牢性に優れていた。
これらの進歩は、自動クラック検出と包括的な構造的健康モニタリングシステムにおける現実的な応用のためのFlexiCrackNetの可能性を強調している。
- 参考スコア(独自算出の注目度): 24.99233476254989
- License:
- Abstract: Automatic crack segmentation is a cornerstone technology for intelligent visual perception modules in road safety maintenance and structural integrity systems. Existing deep learning models and ``pre-training + fine-tuning'' paradigms often face challenges of limited adaptability in resource-constrained environments and inadequate scalability across diverse data domains. To overcome these limitations, we propose FlexiCrackNet, a novel pipeline that seamlessly integrates traditional deep learning paradigms with the strengths of large-scale pre-trained models. At its core, FlexiCrackNet employs an encoder-decoder architecture to extract task-specific features. The lightweight EdgeSAM's CNN-based encoder is exclusively used as a generic feature extractor, decoupled from the fixed input size requirements of EdgeSAM. To harmonize general and domain-specific features, we introduce the information-Interaction gated attention mechanism (IGAM), which adaptively fuses multi-level features to enhance segmentation performance while mitigating irrelevant noise. This design enables the efficient transfer of general knowledge to crack segmentation tasks while ensuring adaptability to diverse input resolutions and resource-constrained environments. Experiments show that FlexiCrackNet outperforms state-of-the-art methods, excels in zero-shot generalization, computational efficiency, and segmentation robustness under challenging scenarios such as blurry inputs, complex backgrounds, and visually ambiguous artifacts. These advancements underscore the potential of FlexiCrackNet for real-world applications in automated crack detection and comprehensive structural health monitoring systems.
- Abstract(参考訳): 自動クラックセグメンテーションは、道路の安全維持と構造整合性システムにおいて、インテリジェントな視覚認識モジュールのための基礎技術である。
既存のディープラーニングモデルや‘pre-training + fine-tuning’のパラダイムは、リソース制約のある環境での適応性の制限や、さまざまなデータドメインでのスケーラビリティの不十分といった課題に直面します。
これらの制限を克服するために、我々はFlexiCrackNetを提案する。FlexiCrackNetは、従来のディープラーニングパラダイムを大規模な事前学習モデルの強みとシームレスに統合する新しいパイプラインである。
コアとなるFlexiCrackNetは、タスク固有の機能を抽出するためにエンコーダ-デコーダアーキテクチャを使用している。
軽量なEdgeSAMのCNNベースのエンコーダは、EdgeSAMの固定入力サイズ要件から切り離された一般的な特徴抽出器としてのみ使用される。
一般的な特徴とドメイン固有の特徴を調和させるために,多レベル特徴を適応的に融合させ,無関係な雑音を緩和しながらセグメンテーション性能を向上させる情報対話ゲートアテンション機構(IGAM)を導入する。
この設計により、多様な入力解像度やリソース制約のある環境への適応性を確保しつつ、一般的な知識を分割タスクに効率的に移行することができる。
実験の結果、FlexiCrackNetは最先端の手法よりも優れており、ぼやけた入力、複雑な背景、視覚的にあいまいなアーティファクトといった困難なシナリオ下で、ゼロショットの一般化、計算効率、セグメンテーションの堅牢性に優れています。
これらの進歩は、自動クラック検出と包括的な構造的健康モニタリングシステムにおける現実的な応用のためのFlexiCrackNetの可能性を強調している。
関連論文リスト
- Hard-Constrained Neural Networks with Universal Approximation Guarantees [5.3663546125491735]
HardNetは、モデルキャパシティを犠牲にすることなく、本質的に厳しい制約を満たすニューラルネットワークを構築するためのフレームワークである。
ニューラルネットワークの普遍近似能力はHardNetが保持していることを示す。
論文 参考訳(メタデータ) (2024-10-14T17:59:24Z) - EfficientCrackNet: A Lightweight Model for Crack Segmentation [1.3689715712707347]
き裂検出は、建物、舗装、橋の構造的整合性を維持するために不可欠である。
既存の軽量な手法は、計算の非効率性、複雑な亀裂パターン、難易度などの課題に直面していることが多い。
本稿では,CNN(Convolutional Neural Networks)とトランスフォーマーを組み合わせた軽量ハイブリッドモデルであるEfficientCrackNetを提案する。
論文 参考訳(メタデータ) (2024-09-26T17:44:20Z) - Hybrid-Segmentor: A Hybrid Approach to Automated Fine-Grained Crack Segmentation in Civil Infrastructure [52.2025114590481]
エンコーダ・デコーダをベースとした手法であるHybrid-Segmentorを導入する。
これにより、モデルは、様々な種類の形状、表面、き裂の大きさを区別する一般化能力を向上させることができる。
提案モデルは,5つの測定基準(精度0.971,精度0.804,リコール0.744,F1スコア0.770,IoUスコア0.630)で既存ベンチマークモデルより優れ,最先端の状態を達成している。
論文 参考訳(メタデータ) (2024-09-04T16:47:16Z) - Betrayed by Attention: A Simple yet Effective Approach for Self-supervised Video Object Segmentation [76.68301884987348]
自己教師型ビデオオブジェクトセグメンテーション(VOS)のための簡易かつ効果的なアプローチを提案する。
我々の重要な洞察は、DINO-pretrained Transformerに存在する構造的依存関係を利用して、ビデオ内の堅牢な時間分割対応を確立することである。
提案手法は,複数の教師なしVOSベンチマークにまたがる最先端性能を実証し,複雑な実世界のマルチオブジェクトビデオセグメンテーションタスクに優れることを示す。
論文 参考訳(メタデータ) (2023-11-29T18:47:17Z) - Learning to Generate Training Datasets for Robust Semantic Segmentation [37.9308918593436]
セマンティックセグメンテーション手法の堅牢性を改善するための新しい手法を提案する。
我々は,現実的で可視な摂動画像を生成するために,新しい条件付き生成対向ネットワークであるRobustaを設計した。
我々の結果は、このアプローチが安全クリティカルなアプリケーションに有用である可能性を示唆している。
論文 参考訳(メタデータ) (2023-08-01T10:02:26Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
セグメンテーションネットワークによって抽出されたマルチスケール特徴の識別能力を高めるために,コントラスト学習を適用した。
まず、エンコーダのマルチスケール表現を共通の特徴空間にマッピングすることにより、教師付き局所言語制約の新しい形式をインスタンス化する。
論文 参考訳(メタデータ) (2022-03-25T01:24:24Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Boundary-Aware Segmentation Network for Mobile and Web Applications [60.815545591314915]
境界認識ネットワーク(basnet)は、精度の高い画像分割のための予測再定義アーキテクチャとハイブリッド損失と統合されている。
basnetは単一のgpu上で70fps以上動作し、多くの潜在的なアプリケーションが利用できる。
BASNetをベースに、BASNetが「COPY」と「PASTING」現実世界のオブジェクトのための拡張現実であるAR COPY & PASTEと、オブジェクト背景の自動削除のためのWebベースのツールであるOBJECT CUTの2つの(近い)商用アプリケーションをさらに開発しました。
論文 参考訳(メタデータ) (2021-01-12T19:20:26Z) - CARAFE++: Unified Content-Aware ReAssembly of FEatures [132.49582482421246]
この目標を達成するために、ユニバーサルで軽量で高効率なオペレータであるContent-Aware ReAssembly of FEatures(CARAFE++)を提案します。
CARAFE++は、インスタンス固有のコンテンツ認識処理を可能にするアダプティブカーネルをオンザフライで生成する。
計算のオーバーヘッドが無視できるすべてのタスクにおいて、一貫性と実質的な利益を示しています。
論文 参考訳(メタデータ) (2020-12-07T07:34:57Z) - Auto-Panoptic: Cooperative Multi-Component Architecture Search for
Panoptic Segmentation [144.50154657257605]
本稿では、バックボーン、セグメンテーションブランチ、フィーチャーフュージョンモジュールを含むすべての主要コンポーネントを同時に検索する効率的なフレームワークを提案する。
検索したアーキテクチャ、すなわちAuto-Panopticは、挑戦的なCOCOとADE20Kベンチマークに関する新しい最先端技術を実現します。
論文 参考訳(メタデータ) (2020-10-30T08:34:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。