論文の概要: Scaling Laws for Differentially Private Language Models
- arxiv url: http://arxiv.org/abs/2501.18914v1
- Date: Fri, 31 Jan 2025 06:32:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:02:09.037755
- Title: Scaling Laws for Differentially Private Language Models
- Title(参考訳): 異なる私的言語モデルのためのスケーリング法則
- Authors: Ryan McKenna, Yangsibo Huang, Amer Sinha, Borja Balle, Zachary Charles, Christopher A. Choquette-Choo, Badih Ghazi, George Kaissis, Ravi Kumar, Ruibo Liu, Da Yu, Chiyuan Zhang,
- Abstract要約: スケーリング法則は、大規模言語モデル(LLM)トレーニングの重要なコンポーネントとして現れ、スケールによるパフォーマンス向上を予測することができる。
LLMは(時にはセンシティブな)ユーザデータから得られるような、大規模で高品質なトレーニングデータセットに依存しています。
この機密性の高いユーザーデータのトレーニングモデルは、差分プライバシー(DP)のような慎重なプライバシー保護を必要とする
- 参考スコア(独自算出の注目度): 53.14592585413073
- License:
- Abstract: Scaling laws have emerged as important components of large language model (LLM) training as they can predict performance gains through scale, and provide guidance on important hyper-parameter choices that would otherwise be expensive. LLMs also rely on large, high-quality training datasets, like those sourced from (sometimes sensitive) user data. Training models on this sensitive user data requires careful privacy protections like differential privacy (DP). However, the dynamics of DP training are significantly different, and consequently their scaling laws are not yet fully understood. In this work, we establish scaling laws that accurately model the intricacies of DP LLM training, providing a complete picture of the compute-privacy-utility tradeoffs and the optimal training configurations in many settings.
- Abstract(参考訳): スケール法則は、大規模言語モデル(LLM)トレーニングの重要なコンポーネントとして現れており、スケールによるパフォーマンス向上を予測でき、そうでなければコストがかかる重要なハイパーパラメータの選択に関するガイダンスを提供している。
LLMはまた、(時にはセンシティブな)ユーザデータから得られるような、大規模で高品質なトレーニングデータセットにも依存しています。
このセンシティブなユーザーデータのトレーニングモデルは、差分プライバシー(DP)のような慎重なプライバシー保護を必要とする。
しかし、DPトレーニングの力学は著しく異なるため、それらのスケーリング法則はまだ完全には理解されていない。
本研究では,DP LLMトレーニングの複雑さを正確にモデル化するスケーリング法則を確立し,計算プライバシ・ユーティリティトレードオフと最適トレーニング設定の完全な図面を提供する。
関連論文リスト
- Optimization Hyper-parameter Laws for Large Language Models [52.49860340549727]
ハイパーパラメータとトレーニング結果の関係をキャプチャするフレームワークであるOps-Lawsを提案する。
さまざまなモデルサイズとデータスケールにわたる検証は、Opt-Lawsのトレーニング損失を正確に予測する能力を示しています。
このアプローチは、全体的なモデル性能を高めながら、計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2024-09-07T09:37:19Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
我々は、推奨のために大規模言語モデル(LLM)の分野に焦点を当てる。
ユーザ毎に独立したLoRAを管理するPersonalized LoRAモジュールを組み込んだRecLoRAを提案する。
また、Few2Many Learning Strategyを設計し、従来のレコメンデーションモデルをレンズとして使用して、小さなトレーニングスペースをフルスペースに拡大する。
論文 参考訳(メタデータ) (2024-08-07T04:20:28Z) - DPZero: Private Fine-Tuning of Language Models without Backpropagation [49.365749361283704]
DPZeroは、ほぼ次元に依存しない新しいゼロオーダーアルゴリズムである。
DPZeroのメモリ効率は、いくつかの下流タスクでプライベートに微調整されたRoBERTaとOPTで実証される。
論文 参考訳(メタデータ) (2023-10-14T18:42:56Z) - Accuracy Improvement in Differentially Private Logistic Regression: A
Pre-training Approach [4.297070083645049]
本稿では,事前学習モジュールを用いてDPロジスティック回帰(LR)モデルの精度を高めることを目的とする。
その結果,事前学習モジュールを追加することでDP-LRモデルの精度が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2023-07-25T19:07:03Z) - Reproducible scaling laws for contrastive language-image learning [42.354402731615444]
コントラッシブ言語イメージ事前学習(CLIP)のスケーリング法を,パブリックLAIONデータセットとオープンソースOpenCLIPリポジトリを用いて検討する。
私たちの大規模な実験には、最大20億のイメージテキストペアでトレーニングされたモデルと、複数の下流タスクに対する電力法スケーリングの特定が含まれています。
OpenAIモデルとOpenCLIPモデルは、同一のモデルアーキテクチャにもかかわらず、異なるスケーリング挙動を示すため、トレーニング分布がスケーリング法則において重要な役割を果たすことがわかった。
論文 参考訳(メタデータ) (2022-12-14T10:24:50Z) - Differentially Private Decoding in Large Language Models [14.221692239892207]
本稿では,復号段階で既に訓練済みのモデルに適用可能な,単純で分かり易く,計算的に軽量な摂動機構を提案する。
我々の摂動メカニズムはモデルに依存しず、どんな大規模言語モデルとも併用することができる。
論文 参考訳(メタデータ) (2022-05-26T20:50:58Z) - Large Scale Transfer Learning for Differentially Private Image
Classification [51.10365553035979]
Differential Privacy(DP)は、個別のサンプルレベルのプライバシで機械学習モデルをトレーニングするための正式なフレームワークを提供する。
DP-SGDを用いたプライベートトレーニングは、個々のサンプル勾配にノイズを注入することで漏れを防ぐ。
この結果は非常に魅力的であるが,DP-SGDを用いた大規模モデルのトレーニングの計算コストは,非プライベートトレーニングよりもかなり高い。
論文 参考訳(メタデータ) (2022-05-06T01:22:20Z) - Large Language Models Can Be Strong Differentially Private Learners [70.0317718115406]
Differentially Private(DP)学習は、テキストの大規模なディープラーニングモデルを構築する上で、限られた成功を収めている。
この性能低下は,大規模な事前学習モデルを用いることで緩和可能であることを示す。
本稿では,DP-SGDにおけるクリッピングを,サンプルごとの勾配をインスタンス化せずに実行可能にするメモリ節約手法を提案する。
論文 参考訳(メタデータ) (2021-10-12T01:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。