論文の概要: GPO-VAE: Modeling Explainable Gene Perturbation Responses utilizing GRN-Aligned Parameter Optimization
- arxiv url: http://arxiv.org/abs/2501.18973v1
- Date: Fri, 31 Jan 2025 09:08:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:03:09.123945
- Title: GPO-VAE: Modeling Explainable Gene Perturbation Responses utilizing GRN-Aligned Parameter Optimization
- Title(参考訳): GPO-VAE:GRN適応パラメータ最適化を用いた説明可能な遺伝子摂動応答のモデル化
- Authors: Seungheun Baek, Soyon Park, Yan Ting Chok, Mogan Gim, Jaewoo Kang,
- Abstract要約: 本稿では,GRNによる遺伝子制御ネットワークによって強化された,説明可能な変分オートエンコーダ(VAE)であるGPO-VAEを提案する。
我々の主要なアプローチは、GRN対応の説明可能性に対する潜伏摂動効果に関連する学習可能なパラメータを最適化することである。
- 参考スコア(独自算出の注目度): 15.892401495784078
- License:
- Abstract: Motivation: Predicting cellular responses to genetic perturbations is essential for understanding biological systems and developing targeted therapeutic strategies. While variational autoencoders (VAEs) have shown promise in modeling perturbation responses, their limited explainability poses a significant challenge, as the learned features often lack clear biological meaning. Nevertheless, model explainability is one of the most important aspects in the realm of biological AI. One of the most effective ways to achieve explainability is incorporating the concept of gene regulatory networks (GRNs) in designing deep learning models such as VAEs. GRNs elicit the underlying causal relationships between genes and are capable of explaining the transcriptional responses caused by genetic perturbation treatments. Results: We propose GPO-VAE, an explainable VAE enhanced by GRN-aligned Parameter Optimization that explicitly models gene regulatory networks in the latent space. Our key approach is to optimize the learnable parameters related to latent perturbation effects towards GRN-aligned explainability. Experimental results on perturbation prediction show our model achieves state-of-the-art performance in predicting transcriptional responses across multiple benchmark datasets. Furthermore, additional results on evaluating the GRN inference task reveal our model's ability to generate meaningful GRNs compared to other methods. According to qualitative analysis, GPO-VAE posseses the ability to construct biologically explainable GRNs that align with experimentally validated regulatory pathways. GPO-VAE is available at https://github.com/dmis-lab/GPO-VAE
- Abstract(参考訳): モチベーション(Motivation): 生物学的システムを理解し、標的とする治療戦略を開発するためには、遺伝的摂動に対する細胞応答の予測が不可欠である。
変分オートエンコーダ(VAE)は摂動応答のモデル化において有望であるが、その限定的な説明可能性には大きな課題が生じる。
それでも、モデル説明可能性は、生物学的AIの領域において最も重要な側面の1つである。
説明可能性を達成する最も効果的な方法の1つは、VAEのようなディープラーニングモデルの設計に遺伝子制御ネットワーク(GRN)の概念を取り入れることである。
GRNは遺伝子間の因果関係を誘発し、遺伝的摂動治療によって引き起こされる転写反応を説明することができる。
結果: GRP-VAE は GRN のパラメータ最適化によって拡張された,潜伏空間における遺伝子制御ネットワークを明示的にモデル化した,説明可能なVAE である。
我々の主要なアプローチは、GRN対応の説明可能性に対する潜伏摂動効果に関連する学習可能なパラメータを最適化することである。
摂動予測実験の結果,複数のベンチマークデータセットにまたがる書き起こし応答の予測における最先端性能が得られた。
さらに、GRN推論タスクを評価する際のさらなる結果から、他の手法と比較して意味のあるGRNを生成するモデルの能力が明らかになる。
定性的分析によると、GPO-VAEは生物学的に説明可能なGRNを構築する能力を持ち、実験的に検証された制御経路と整合する。
GPO-VAEはhttps://github.com/dmis-lab/GPO-VAEで利用可能である。
関連論文リスト
- A Non-negative VAE:the Generalized Gamma Belief Network [49.970917207211556]
ガンマ信念ネットワーク(GBN)は、テキストデータ中の多層解釈可能な潜在表現を明らかにする可能性を実証している。
本稿では、一般化ガンマ信念ネットワーク(Generalized GBN)を導入し、元の線形生成モデルをより表現力のある非線形生成モデルに拡張する。
また、潜伏変数の後方分布を近似する上向きのワイブル推論ネットワークを提案する。
論文 参考訳(メタデータ) (2024-08-06T18:18:37Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
ゲノム配列に基づいて訓練されたブラックボックス深層学習モデルは、異なる遺伝子制御機構の結果を予測するのに優れている。
本稿では、遺伝的プログラミングを用いて、その意味的多様性に寄与する配列の摂動を進化させることによりデータセットを生成することを提案する。
論文 参考訳(メタデータ) (2024-07-03T10:31:30Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNAは、ゲノムボキャブラリ学習の観点からゲノムのトークン化を改良する汎用フレームワークである。
ベクトル量子化されたコードブックを学習可能な語彙として活用することにより、VQDNAはゲノムをパターン認識の埋め込みに適応的にトークン化することができる。
論文 参考訳(メタデータ) (2024-05-13T20:15:03Z) - Inference of dynamical gene regulatory networks from single-cell data
with physics informed neural networks [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)を用いて,予測的,動的 GRN のパラメータを推定する方法について述べる。
具体的には, 分岐挙動を示すGRNについて検討し, 細胞分化をモデル化する。
論文 参考訳(メタデータ) (2024-01-14T21:43:10Z) - Stability Analysis of Non-Linear Classifiers using Gene Regulatory
Neural Network for Biological AI [2.0755366440393743]
二重層転写翻訳化学反応モデルを用いた遺伝子パーセプトロンの数学的モデルを構築した。
我々は全接続GRNNサブネットワーク内の各遺伝子パーセプトロンの安定性解析を行い、時間的および安定した濃度出力を決定する。
論文 参考訳(メタデータ) (2023-09-14T21:37:38Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Granger causal inference on DAGs identifies genomic loci regulating
transcription [77.58911272503771]
GrID-Netは、DBG構造化システムにおけるGranger因果推論のためのラタグメッセージパッシングを備えたグラフニューラルネットワークに基づくフレームワークである。
我々の応用は、特定の遺伝子の調節を仲介するゲノム座を同定する単一セルマルチモーダルデータの解析である。
論文 参考訳(メタデータ) (2022-10-18T21:15:10Z) - Predicting Cellular Responses with Variational Causal Inference and
Refined Relational Information [13.106564921658089]
そこで本稿では,非現実的摂動下での細胞の遺伝子発現を予測するために,ベイズ因果推論フレームワークを提案する。
我々は、遺伝子制御ネットワークの形で生物学的知識を表す情報を活用して、個別化された細胞応答予測を支援する。
論文 参考訳(メタデータ) (2022-09-30T22:13:57Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Gene Regulatory Network Inference with Latent Force Models [1.2691047660244335]
タンパク質合成の遅延は、RNAシークエンシング時系列データから遺伝子制御ネットワーク(GRN)を構築する際に相反する効果をもたらす。
実験データに適合するメカニスティック方程式とベイズ的アプローチを組み合わせることで,翻訳遅延を組み込んだモデルを提案する。
論文 参考訳(メタデータ) (2020-10-06T09:03:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。