Self-Supervised Cross-Modal Text-Image Time Series Retrieval in Remote Sensing
- URL: http://arxiv.org/abs/2501.19043v1
- Date: Fri, 31 Jan 2025 11:14:38 GMT
- Title: Self-Supervised Cross-Modal Text-Image Time Series Retrieval in Remote Sensing
- Authors: Genc Hoxha, Olivér Angyal, Begüm Demir,
- Abstract summary: We present a self-supervised cross-modal text-image time series retrieval (text-ITSR) method in remote sensing (RS)<n>We focus our attention on text-ITSR in pairs of images (i.e., bitemporal images)<n>The proposed text-ITSR method consists of two key components: 1) modality-specific encoders to model the semantic content of bitemporal images and text sentences with discriminative features; and 2) modality-specific projection heads to align textual and image representations in a shared embedding space.
- Score: 3.271701183630488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of image time series retrieval (ITSR) methods is a growing research interest in remote sensing (RS). Given a user-defined image time series (i.e., the query time series), the ITSR methods search and retrieve from large archives the image time series that have similar content to the query time series. The existing ITSR methods in RS are designed for unimodal retrieval problems, limiting their usability and versatility. To overcome this issue, as a first time in RS we introduce the task of cross-modal text-ITSR. In particular, we present a self-supervised cross-modal text-image time series retrieval (text-ITSR) method that enables the retrieval of image time series using text sentences as queries, and vice versa. In detail, we focus our attention on text-ITSR in pairs of images (i.e., bitemporal images). The proposed text-ITSR method consists of two key components: 1) modality-specific encoders to model the semantic content of bitemporal images and text sentences with discriminative features; and 2) modality-specific projection heads to align textual and image representations in a shared embedding space. To effectively model the temporal information within the bitemporal images, we introduce two fusion strategies: i) global feature fusion (GFF) strategy that combines global image features through simple yet effective operators; and ii) transformer-based feature fusion (TFF) strategy that leverages transformers for fine-grained temporal integration. Extensive experiments conducted on two benchmark RS archives demonstrate the effectiveness of the proposed method in accurately retrieving semantically relevant bitemporal images (or text sentences) to a query text sentence (or bitemporal image). The code of this work is publicly available at https://git.tu-berlin.de/rsim/cross-modal-text-tsir.
Related papers
- TMCIR: Token Merge Benefits Composed Image Retrieval [13.457620649082504]
Composed Image Retrieval (CIR) retrieves target images using a multi-modal query that combines a reference image with text describing desired modifications.
Current cross-modal feature fusion approaches for CIR exhibit an inherent bias in intention interpretation.
We propose a novel framework that advances composed image retrieval through two key innovations.
arXiv Detail & Related papers (2025-04-15T09:14:04Z) - Towards Text-Image Interleaved Retrieval [49.96332254241075]
We introduce the text-image interleaved retrieval (TIIR) task, where the query and document are interleaved text-image sequences.<n>We construct a TIIR benchmark based on naturally interleaved wikiHow tutorials, where a specific pipeline is designed to generate interleaved queries.<n>We propose a novel Matryoshka Multimodal Embedder (MME), which compresses the number of visual tokens at different granularity.
arXiv Detail & Related papers (2025-02-18T12:00:47Z) - Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks [62.758680527838436]
Leopard is a vision-language model for handling vision-language tasks involving multiple text-rich images.
First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios.
Second, we developed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length.
arXiv Detail & Related papers (2024-10-02T16:55:01Z) - Unified Text-to-Image Generation and Retrieval [96.72318842152148]
We propose a unified framework in the context of Multimodal Large Language Models (MLLMs)
We first explore the intrinsic discrimi abilities of MLLMs and introduce a generative retrieval method to perform retrieval in a training-free manner.
We then unify generation and retrieval in an autoregressive generation way and propose an autonomous decision module to choose the best-matched one between generated and retrieved images.
arXiv Detail & Related papers (2024-06-09T15:00:28Z) - CFIR: Fast and Effective Long-Text To Image Retrieval for Large Corpora [3.166549403591528]
This paper presents a two-stage Coarse-to-Fine Index-shared Retrieval (CFIR) framework, designed for fast and effective long-text to image retrieval.
CFIR surpasses existing MLLMs by up to 11.06% in Recall@1000, while reducing training and retrieval times by 68.75% and 99.79%, respectively.
arXiv Detail & Related papers (2024-02-23T11:47:16Z) - Sentence-level Prompts Benefit Composed Image Retrieval [69.78119883060006]
Composed image retrieval (CIR) is the task of retrieving specific images by using a query that involves both a reference image and a relative caption.
We propose to leverage pretrained V-L models, e.g., BLIP-2, to generate sentence-level prompts.
Our proposed method performs favorably against the state-of-the-art CIR methods on the Fashion-IQ and CIRR datasets.
arXiv Detail & Related papers (2023-10-09T07:31:44Z) - EDIS: Entity-Driven Image Search over Multimodal Web Content [95.40238328527931]
We introduce textbfEntity-textbfDriven textbfImage textbfSearch (EDIS), a dataset for cross-modal image search in the news domain.
EDIS consists of 1 million web images from actual search engine results and curated datasets, with each image paired with a textual description.
arXiv Detail & Related papers (2023-05-23T02:59:19Z) - Efficient Image-Text Retrieval via Keyword-Guided Pre-Screening [53.1711708318581]
Current image-text retrieval methods suffer from $N$-related time complexity.
This paper presents a simple and effective keyword-guided pre-screening framework for the image-text retrieval.
arXiv Detail & Related papers (2023-03-14T09:36:42Z) - Paired Cross-Modal Data Augmentation for Fine-Grained Image-to-Text
Retrieval [142.047662926209]
We propose a novel framework for paired data augmentation by uncovering the hidden semantic information of StyleGAN2 model.
We generate augmented text through random token replacement, then pass the augmented text into the latent space alignment module.
We evaluate the efficacy of our augmented data approach on two public cross-modal retrieval datasets.
arXiv Detail & Related papers (2022-07-29T01:21:54Z) - Progressive Learning for Image Retrieval with Hybrid-Modality Queries [48.79599320198615]
Image retrieval with hybrid-modality queries, also known as composing text and image for image retrieval (CTI-IR)
We decompose the CTI-IR task into a three-stage learning problem to progressively learn the complex knowledge for image retrieval with hybrid-modality queries.
Our proposed model significantly outperforms state-of-the-art methods in the mean of Recall@K by 24.9% and 9.5% on the Fashion-IQ and Shoes benchmark datasets respectively.
arXiv Detail & Related papers (2022-04-24T08:10:06Z) - Unsupervised Contrastive Hashing for Cross-Modal Retrieval in Remote
Sensing [1.6758573326215689]
Cross-modal text-image retrieval has attracted great attention in remote sensing.
We introduce a novel unsupervised cross-modal contrastive hashing (DUCH) method for text-image retrieval in RS.
Experimental results show that the proposed DUCH outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-04-19T07:25:25Z) - Deep Unsupervised Contrastive Hashing for Large-Scale Cross-Modal
Text-Image Retrieval in Remote Sensing [1.6758573326215689]
We introduce a novel deep unsupervised cross-modal contrastive hashing (DUCH) method for RS text-image retrieval.
Experimental results show that the proposed DUCH outperforms state-of-the-art unsupervised cross-modal hashing methods.
Our code is publicly available at https://git.tu-berlin.de/rsim/duch.
arXiv Detail & Related papers (2022-01-20T12:05:10Z) - Towards Efficient Cross-Modal Visual Textual Retrieval using
Transformer-Encoder Deep Features [10.163477961551592]
Cross-modal retrieval is an important functionality in modern search engines.
In this paper, we focus on the image-sentence retrieval task.
We use the recently introduced TERN architecture as an image-sentence features extractor.
arXiv Detail & Related papers (2021-06-01T10:11:46Z) - Transformer Reasoning Network for Image-Text Matching and Retrieval [14.238818604272751]
We consider the problem of accurate image-text matching for the task of multi-modal large-scale information retrieval.
We introduce the Transformer Reasoning Network (TERN), an architecture built upon one of the modern relationship-aware self-attentive, the Transformer.
TERN is able to separately reason on the two different modalities and to enforce a final common abstract concept space.
arXiv Detail & Related papers (2020-04-20T09:09:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.