JGHand: Joint-Driven Animatable Hand Avater via 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2501.19088v1
- Date: Fri, 31 Jan 2025 12:33:24 GMT
- Title: JGHand: Joint-Driven Animatable Hand Avater via 3D Gaussian Splatting
- Authors: Zhoutao Sun, Xukun Shen, Yong Hu, Yuyou Zhong, Xueyang Zhou,
- Abstract summary: Jointly 3D Gaussian Hand (JGHand) is a novel joint-driven 3D Gaussian Splatting (3DGS)-based hand representation.
We show that JGHand achieves real-time rendering speeds with enhanced quality, surpassing state-of-the-art methods.
- Score: 3.1143479095236892
- License:
- Abstract: Since hands are the primary interface in daily interactions, modeling high-quality digital human hands and rendering realistic images is a critical research problem. Furthermore, considering the requirements of interactive and rendering applications, it is essential to achieve real-time rendering and driveability of the digital model without compromising rendering quality. Thus, we propose Jointly 3D Gaussian Hand (JGHand), a novel joint-driven 3D Gaussian Splatting (3DGS)-based hand representation that renders high-fidelity hand images in real-time for various poses and characters. Distinct from existing articulated neural rendering techniques, we introduce a differentiable process for spatial transformations based on 3D key points. This process supports deformations from the canonical template to a mesh with arbitrary bone lengths and poses. Additionally, we propose a real-time shadow simulation method based on per-pixel depth to simulate self-occlusion shadows caused by finger movements. Finally, we embed the hand prior and propose an animatable 3DGS representation of the hand driven solely by 3D key points. We validate the effectiveness of each component of our approach through comprehensive ablation studies. Experimental results on public datasets demonstrate that JGHand achieves real-time rendering speeds with enhanced quality, surpassing state-of-the-art methods.
Related papers
- Bundle Adjusted Gaussian Avatars Deblurring [31.718130377229482]
We propose a 3D-aware, physics-oriented model of blur formation attributable to human movement and a 3D human motion model to clarify ambiguities found in motion-induced blurry images.
We have established benchmarks for this task through a synthetic dataset derived from existing multi-view captures, alongside a real-captured dataset acquired through a 360-degree synchronous hybrid-exposure camera system.
arXiv Detail & Related papers (2024-11-24T10:03:24Z) - Learning Interaction-aware 3D Gaussian Splatting for One-shot Hand Avatars [47.61442517627826]
We propose to create animatable avatars for interacting hands with 3D Gaussian Splatting (GS) and single-image inputs.
Our proposed method is validated via extensive experiments on the large-scale InterHand2.6M dataset.
arXiv Detail & Related papers (2024-10-11T14:14:51Z) - XHand: Real-time Expressive Hand Avatar [9.876680405587745]
We introduce an expressive hand avatar, named XHand, that is designed to generate hand shape, appearance, and deformations in real-time.
XHand is able to recover high-fidelity geometry and texture for hand animations across diverse poses in real-time.
arXiv Detail & Related papers (2024-07-30T17:49:21Z) - iHuman: Instant Animatable Digital Humans From Monocular Videos [16.98924995658091]
We present a fast, simple, yet effective method for creating animatable 3D digital humans from monocular videos.
This work achieves and illustrates the need of accurate 3D mesh-type modelling of the human body.
Our method is faster by an order of magnitude (in terms of training time) than its closest competitor.
arXiv Detail & Related papers (2024-07-15T18:51:51Z) - Decaf: Monocular Deformation Capture for Face and Hand Interactions [77.75726740605748]
This paper introduces the first method that allows tracking human hands interacting with human faces in 3D from single monocular RGB videos.
We model hands as articulated objects inducing non-rigid face deformations during an active interaction.
Our method relies on a new hand-face motion and interaction capture dataset with realistic face deformations acquired with a markerless multi-view camera system.
arXiv Detail & Related papers (2023-09-28T17:59:51Z) - HandNeRF: Neural Radiance Fields for Animatable Interacting Hands [122.32855646927013]
We propose a novel framework to reconstruct accurate appearance and geometry with neural radiance fields (NeRF) for interacting hands.
We conduct extensive experiments to verify the merits of our proposed HandNeRF and report a series of state-of-the-art results.
arXiv Detail & Related papers (2023-03-24T06:19:19Z) - RiCS: A 2D Self-Occlusion Map for Harmonizing Volumetric Objects [68.85305626324694]
Ray-marching in Camera Space (RiCS) is a new method to represent the self-occlusions of foreground objects in 3D into a 2D self-occlusion map.
We show that our representation map not only allows us to enhance the image quality but also to model temporally coherent complex shadow effects.
arXiv Detail & Related papers (2022-05-14T05:35:35Z) - MM-Hand: 3D-Aware Multi-Modal Guided Hand Generative Network for 3D Hand
Pose Synthesis [81.40640219844197]
Estimating the 3D hand pose from a monocular RGB image is important but challenging.
A solution is training on large-scale RGB hand images with accurate 3D hand keypoint annotations.
We have developed a learning-based approach to synthesize realistic, diverse, and 3D pose-preserving hand images.
arXiv Detail & Related papers (2020-10-02T18:27:34Z) - Monocular Real-time Hand Shape and Motion Capture using Multi-modal Data [77.34069717612493]
We present a novel method for monocular hand shape and pose estimation at unprecedented runtime performance of 100fps.
This is enabled by a new learning based architecture designed such that it can make use of all the sources of available hand training data.
It features a 3D hand joint detection module and an inverse kinematics module which regresses not only 3D joint positions but also maps them to joint rotations in a single feed-forward pass.
arXiv Detail & Related papers (2020-03-21T03:51:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.