論文の概要: Pivoting Factorization: A Compact Meta Low-Rank Representation of Sparsity for Efficient Inference in Large Language Models
- arxiv url: http://arxiv.org/abs/2501.19090v2
- Date: Tue, 10 Jun 2025 15:10:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:39.453873
- Title: Pivoting Factorization: A Compact Meta Low-Rank Representation of Sparsity for Efficient Inference in Large Language Models
- Title(参考訳): Pivoting Factorization:大規模言語モデルにおける効率的な推論のためのスポーシティのコンパクトなメタ低ランク表現
- Authors: Jialin Zhao, Yingtao Zhang, Carlo Vittorio Cannistraci,
- Abstract要約: Pivoting Factorization (PIFA) は、任意の低ランク表現のコンパクトな形式を教師なしで学習する新しい低ランク表現である。
PIFAは24.2%のメモリ節約と24.6%の高速化を実現している。
MPIFAは、MとPIFAをエンドツーエンドのフレームワークに統合し、既存の低ランクプルーニング手法よりも大幅に優れている。
- 参考スコア(独自算出の注目度): 1.6385815610837167
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid growth of Large Language Models has driven demand for effective model compression techniques to reduce memory and computation costs. Low-rank pruning has gained attention for its GPU compatibility across all densities. However, low-rank pruning struggles to match the performance of semi-structured pruning, often doubling perplexity at similar densities. In this paper, we propose Pivoting Factorization (PIFA), a novel lossless meta low-rank representation that unsupervisedly learns a compact form of any low-rank representation, effectively eliminating redundant information. PIFA identifies pivot rows (linearly independent rows) and expresses non-pivot rows as linear combinations, achieving 24.2% additional memory savings and 24.6% faster inference over low-rank layers at rank = 50% of dimension. To mitigate the performance degradation caused by low-rank pruning, we introduce a novel, retraining-free reconstruction method that minimizes error accumulation (M). MPIFA, combining M and PIFA into an end-to-end framework, significantly outperforms existing low-rank pruning methods, and achieves performance comparable to semi-structured pruning, while surpassing it in GPU efficiency and compatibility. Our code is available at https://github.com/biomedical-cybernetics/pivoting-factorization.
- Abstract(参考訳): 大規模言語モデルの急速な成長により、メモリと計算コストを削減する効果的なモデル圧縮技術への需要が高まった。
低ランクプルーニングは、すべての密度にわたるGPU互換性に注目を集めている。
しかし、低ランクプルーニングは半構造化プルーニングの性能に匹敵し、しばしば同様の密度でパープレキシティを倍増させる。
本稿では,任意の低ランク表現のコンパクトな形式を教師なしで学習し,冗長な情報を効果的に排除する,新しいロスレスメタローランク表現であるPivoting Factorization (PIFA)を提案する。
PIFAはピボット列(直線的な独立行)を識別し、非ピボット列を線形結合として表現し、24.2%のメモリ節約と24.6%の高速推論をランクの50%で達成している。
低ランクプルーニングによる性能劣化を軽減するため,エラー蓄積を最小限に抑える新しいリトレーニングフリーリコンストラクション手法を提案する。
MPIFAは、MとPIFAをエンドツーエンドのフレームワークに組み合わせ、既存の低ランクプルーニング手法を著しく上回り、GPU効率と互換性を上回りながら、半構造化プルーニングに匹敵するパフォーマンスを達成する。
私たちのコードはhttps://github.com/biomedical-cybernetics/pivoting-factorizationで利用可能です。
関連論文リスト
- Scaling Linear Attention with Sparse State Expansion [58.161410995744596]
トランスフォーマーアーキテクチャは、2次計算と線形メモリ成長による長期コンテキストシナリオに苦慮している。
本稿では,情報分類として状態更新を概念化し,線形注意のための行スパース更新定式化を提案する。
次に、スパースフレームワーク内にスパース状態拡張(SSE)を示し、コンテキスト状態を複数のパーティションに拡張する。
論文 参考訳(メタデータ) (2025-07-22T13:27:31Z) - Progressive Binarization with Semi-Structured Pruning for LLMs [36.32239429974179]
大規模言語モデル(LLM)は自然言語処理タスクにおいて顕著な成功を収めた。
彼らの高い計算量とメモリ要求は、リソース制約のあるデバイスへのデプロイに困難をもたらす。
LLM圧縮のための半構造化プルーニング(PBS$2$P)法によるプログレッシブバイナリ化を提案する。
論文 参考訳(メタデータ) (2025-02-03T13:30:29Z) - HASSLE-free: A unified Framework for Sparse plus Low-Rank Matrix Decomposition for LLMs [15.575498324678373]
有望な圧縮スキームは、基礎モデルの密度重みをスパースと低ランク行列の和に分解することである。
本稿では,半構造化)スパースと低ランク行列分解のためのHASSLEフリーの統一フレームワークを設計する。
論文 参考訳(メタデータ) (2025-02-02T20:23:32Z) - Lightweight and Post-Training Structured Pruning for On-Device Large Lanaguage Models [11.93284417365518]
我々は,ハイブリッド・グラニュラリティ・プルーニング戦略を用いた軽量なポストトレーニング構造化プルーニング手法Compumを紹介する。
Compは、LLM-Prunerと比較して20%のプルーニング比でLLaMA-2-7Bモデルの性能を6.13%向上させる。
論文 参考訳(メタデータ) (2025-01-25T16:03:58Z) - FASP: Fast and Accurate Structured Pruning of Large Language Models [24.185245582500876]
FASP(Fast and Accurate Structured Pruning)は,大規模言語モデル(LLM)のための新しい構造化プルーニングフレームワークである。
FASPはシーケンシャルなレイヤを相互にリンクする独自のプルーニング構造を採用しており、同時に前のレイヤで対応する行を削除しながら、追加のパフォーマンス損失を発生させることなく、ひとつのレイヤで列を削除できる。
我々は,OPTおよびLLaMAモデルファミリー上でのFASPを評価し,最先端の手法と比較して,下流タスクの難易度と精度において優れた性能を示す。
論文 参考訳(メタデータ) (2025-01-16T09:38:39Z) - OP-LoRA: The Blessing of Dimensionality [93.08208871549557]
低ランクアダプタは、少数のパラメータしか持たない大型モデルの微調整を可能にする。
しばしば最適化の課題を提起するが、収束性は低い。
推論コストを増大させることなく、トレーニングを加速する過剰パラメータ化アプローチを導入する。
視覚言語タスクの改善、特に画像生成の顕著な向上を実現している。
論文 参考訳(メタデータ) (2024-12-13T18:55:19Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoREは、Kroneckerによって構築された超複素パラメータ化空間をAggregate Low Rank Expertsに再利用する新しいPETL法である。
巧妙な設計のおかげで、ALoREは無視できる余分なパラメータを保持し、凍ったバックボーンに強制的にマージできる。
論文 参考訳(メタデータ) (2024-12-11T12:31:30Z) - Breaking the Memory Barrier: Near Infinite Batch Size Scaling for Contrastive Loss [59.835032408496545]
本稿では, コントラスト損失計算を任意の小ブロックに分割するタイルベースの戦略を提案する。
分散システムの階層構造を活用するためのマルチレベルタイリング戦略も導入する。
SOTAメモリ効率のソリューションと比較すると、同等の速度を維持しながら、メモリの2桁の削減を実現している。
論文 参考訳(メタデータ) (2024-10-22T17:59:30Z) - Efficient Diffusion as Low Light Enhancer [63.789138528062225]
RATR(Reflectance-Aware Trajectory Refinement)は、イメージの反射成分を用いて教師の軌跡を洗練するための、シンプルで効果的なモジュールである。
textbfReDDiT (textbfDistilled textbfTrajectory) は低照度画像強調(LLIE)に適した効率的で柔軟な蒸留フレームワークである。
論文 参考訳(メタデータ) (2024-10-16T08:07:18Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models [53.638791265113625]
空間保存型大規模言語モデルのための効率的な微調整法
コードはhttps://github.com/Lucky-Lance/SPP.comで公開される。
論文 参考訳(メタデータ) (2024-05-25T04:55:27Z) - LD-Pruner: Efficient Pruning of Latent Diffusion Models using Task-Agnostic Insights [2.8461446020965435]
本稿では,遅延拡散モデル圧縮のための新しい性能保存型構造化プルーニング手法であるLD-Prunerを紹介する。
我々は,テキスト・トゥ・イメージ(T2I)生成,無条件画像生成(UIG),無条件音声生成(UAG)の3つのタスクに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-04-18T06:35:37Z) - Sparse Model Soups: A Recipe for Improved Pruning via Model Averaging [24.64264715041198]
Sparse Model Soups (SMS) は,各プルー・リトレインサイクルを前フェーズから平均モデルに開始することでスパースモデルをマージする新しい手法である。
SMSはスパース性を保ち、スパースネットワークの利点を悪用し、モジュール化され、完全に並列化可能であり、IMPのパフォーマンスを大幅に改善する。
論文 参考訳(メタデータ) (2023-06-29T08:49:41Z) - Low-Rank Prune-And-Factorize for Language Model Compression [18.088550230146247]
マトリックスの分解は、中程度から高い圧縮速度で良好な性能を維持することができない。
スパシティ対応SVDとミックスランクファインチューニングの2つの手法を提案する。
論文 参考訳(メタデータ) (2023-06-25T07:38:43Z) - Monarch: Expressive Structured Matrices for Efficient and Accurate
Training [64.6871423399431]
大規模なニューラルネットワークは多くのドメインで優れているが、トレーニングや微調整は高価である。
計算やメモリ要件を減らすための一般的なアプローチは、重み付け行列を構造化行列に置き換えることである。
ハードウェア効率のよい行列(Monarch)のクラスを提案する。
論文 参考訳(メタデータ) (2022-04-01T17:37:29Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。